메뉴 건너뛰기




Volumn , Issue , 2007, Pages 153-162

ORIGAMI: Mining representative orthogonal graph patterns

Author keywords

[No Author keywords available]

Indexed keywords

GRAPH MINING; HIGH-QUALITY; INTERNATIONAL CONFERENCES; PATTERN SPACE; RANDOMIZED ALGORITHMS; SYNTHETIC DATASETS;

EID: 49749107567     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2007.45     Document Type: Conference Paper
Times cited : (55)

References (16)
  • 1
    • 12244313034 scopus 로고    scopus 로고
    • Approximating a collection of frequent sets
    • F. Afrati, G. Gionis, and H. Mannila. Approximating a collection of frequent sets. In SIGKDD, 2004.
    • (2004) SIGKDD
    • Afrati, F.1    Gionis, G.2    Mannila, H.3
  • 2
    • 0032024433 scopus 로고    scopus 로고
    • A graph distance metric based on the maximal common subgraph
    • H. Bunke and K. Shearer. A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 19:255-259, 1998.
    • (1998) Pattern Recognition Letters , vol.19 , pp. 255-259
    • Bunke, H.1    Shearer, K.2
  • 3
    • 33745145777 scopus 로고    scopus 로고
    • T. Calders, C. Rigotti, and J.-F. Boulicaut. A Survey on Condensed Representation for Frequent Sets. In Constraint-Based Mining and Inductive DB (LNCS 3848), 2005.
    • T. Calders, C. Rigotti, and J.-F. Boulicaut. A Survey on Condensed Representation for Frequent Sets. In Constraint-Based Mining and Inductive DB (LNCS Vol. 3848), 2005.
  • 4
    • 0027652468 scopus 로고
    • Substructure discovery using minimal description length and background knowledge
    • D. Cook and L. Holder. Substructure discovery using minimal description length and background knowledge. Journal of Artificial Intelligence Research, 1:231-255, 1994.
    • (1994) Journal of Artificial Intelligence Research , vol.1 , pp. 231-255
    • Cook, D.1    Holder, L.2
  • 6
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraphs in the presence of isomorphism
    • J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence of isomorphism. In ICDM, 2003.
    • (2003) ICDM
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 7
    • 12244294770 scopus 로고    scopus 로고
    • SPIN: Mining Maximal Frequent Subgraphs from Graph Databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: Mining Maximal Frequent Subgraphs from Graph Databases. In SIGKDD, 2004.
    • (2004) SIGKDD
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 8
    • 0037364958 scopus 로고    scopus 로고
    • Complete mining of frequent patterns from graphs: Mining graph data
    • A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning, 50(3):321-354, 2003.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 321-354
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 9
    • 78149312583 scopus 로고    scopus 로고
    • Frequent Subgraph Discovery
    • M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM, 2001.
    • (2001) ICDM
    • Kuramochi, M.1    Karypis, G.2
  • 10
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference. In SIGKDD, 2004.
    • (2004) SIGKDD
    • Nijssen, S.1    Kok, J.2
  • 11
    • 34748817998 scopus 로고    scopus 로고
    • MARGIN: Maximal Frequent Subgraph Mining
    • L. Thomas, S. Valluri, and K. Karlapalem. MARGIN: Maximal Frequent Subgraph Mining. In ICDM, 2006.
    • (2006) ICDM
    • Thomas, L.1    Valluri, S.2    Karlapalem, K.3
  • 12
    • 33749551116 scopus 로고    scopus 로고
    • Extracting Redundancy-Aware Top-k Patterns
    • D. Xin, H. Cheng, X. Yan, and J. Han. Extracting Redundancy-Aware Top-k Patterns. In SIGKDD, 2006.
    • (2006) SIGKDD
    • Xin, D.1    Cheng, H.2    Yan, X.3    Han, J.4
  • 13
    • 33745458995 scopus 로고    scopus 로고
    • Mining Compressed Frequent-Pattern Sets
    • August
    • D. Xin, J. Han, X. Yan, and H. Cheng. Mining Compressed Frequent-Pattern Sets. In VLDB, August 2005.
    • (2005) VLDB
    • Xin, D.1    Han, J.2    Yan, X.3    Cheng, H.4
  • 14
    • 78149333073 scopus 로고    scopus 로고
    • gSpan: Graph-Based Substructure Pattern Mining
    • X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In ICDM, 2002.
    • (2002) ICDM
    • Yan, X.1    Han, J.2
  • 15
    • 77952334885 scopus 로고    scopus 로고
    • CloseGraph: Mining Closed Frequent Graph Patterns
    • X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. In SIGKDD, 2003.
    • (2003) SIGKDD
    • Yan, X.1    Han, J.2
  • 16
    • 3142736597 scopus 로고    scopus 로고
    • Graph Indexing: A Frequent Structure-based Approach
    • X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent Structure-based Approach. In SIGMOD, 2004.
    • (2004) SIGMOD
    • Yan, X.1    Yu, P.S.2    Han, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.