메뉴 건너뛰기




Volumn , Issue , 2004, Pages 439-442

GREW - A scalable frequent subgraph discovery algorithm

Author keywords

Frequent pattern discovery; Frequent subgraph; Graph mining

Indexed keywords

DATASETS; FREQUENT PATTERN DISCOVERY; FREQUENT SUBGRAPHS; GRAPH MINING;

EID: 19544365404     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2004.10024     Document Type: Conference Paper
Times cited : (97)

References (10)
  • 1
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substructures of molecules. In Proc. ICDM'02, 2002.
    • (2002) Proc. ICDM'02
    • Borgelt, C.1    Berthold, M.R.2
  • 2
    • 0027652468 scopus 로고
    • Substructure discovery using minimum description length and background knowledge
    • D. J. Cook and L. B. Holder. Substructure discovery using minimum description length and background knowledge. J. Artificial Intelligence Research, 1, 1994.
    • (1994) J. Artificial Intelligence Research , vol.1
    • Cook, D.J.1    Holder, L.B.2
  • 3
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraph in the presence of isomophism
    • J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomophism. In Proc. ICDM'03, 2003.
    • (2003) Proc. ICDM'03
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 4
    • 0037364958 scopus 로고    scopus 로고
    • Complete mining of frequent patterns from graphs: Mining graph data
    • A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning, 50(3), 2003.
    • (2003) Machine Learning , vol.50 , Issue.3
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 5
    • 4544385908 scopus 로고    scopus 로고
    • An efficient algorithm for discovering frequent subgraphs
    • M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent subgraphs. IEEE TKDE, 16(9), 2004.
    • (2004) IEEE TKDE , vol.16 , Issue.9
    • Kuramochi, M.1    Karypis, G.2
  • 6
    • 12244310989 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In Proc. SDM04, 2004.
    • (2004) Proc. SDM04
    • Kuramochi, M.1    Karypis, G.2
  • 7
    • 19544394211 scopus 로고    scopus 로고
    • Grew - A scalable frequent subgraph discovery algorithm
    • University of Minnesota, Dept. of Computer Science
    • M. Kuramochi and G. Karypis. Grew - a scalable frequent subgraph discovery algorithm. Technical Report 04-024, University of Minnesota, Dept. of Computer Science, 2004.
    • (2004) Technical Report , vol.4 , Issue.24
    • Kuramochi, M.1    Karypis, G.2
  • 8
    • 19544394672 scopus 로고    scopus 로고
    • Mining patterns from structured data by beam-wise graph-based induction
    • T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Mining patterns from structured data by beam-wise graph-based induction. In Proc. DS2002, 2002.
    • (2002) Proc. DS2002
    • Matsuda, T.1    Motoda, H.2    Yoshida, T.3    Washio, T.4
  • 9
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. ICDM'02, 2002.
    • (2002) Proc. ICDM'02
    • Yan, X.1    Han, J.2
  • 10
    • 0029306031 scopus 로고
    • CLIP: Concept learning from inference patterns
    • K. Yoshida and H. Motoda. CLIP: Concept learning from inference patterns. Artificial Intelligence, 75(1), 1995.
    • (1995) Artificial Intelligence , vol.75 , Issue.1
    • Yoshida, K.1    Motoda, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.