-
1
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD'93, pages 207-216.
-
SIGMOD'93
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
2
-
-
0002221136
-
Fast algorithms for mining association rules
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB'94, pages 487-499.
-
VLDB'94
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
0032091573
-
Efficiently mining long patterns from databases
-
R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98, pages 85-93.
-
SIGMOD'98
, pp. 85-93
-
-
Bayardo, R.1
-
4
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket analysis
-
S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. In SIGMOD'97, pages 255-264.
-
SIGMOD'97
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
5
-
-
0035007850
-
MAFIA: A maximal frequent itemset algorithm for transactional databases
-
ICDE'01
-
D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm for transactional databases. In ICDE'01, pages 443-452.
-
-
-
Burdick, D.1
Calimlim, M.2
Gehrke, J.3
-
6
-
-
29844457781
-
Mining top-k covering rule groups for gene expression data
-
G. Cong, K. Tan, A. K. H. Tung, and X. Xu. Mining top-k covering rule groups for gene expression data. In SIGMOD'05, pages 670-681.
-
SIGMOD'05
, pp. 670-681
-
-
Cong, G.1
Tan, K.2
Tung, A.K.H.3
Xu, X.4
-
7
-
-
78149351437
-
Efficiently mining maximal frequent itemsets
-
K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In ICDM'01, pages 163-170.
-
ICDM'01
, pp. 163-170
-
-
Gouda, K.1
Zaki, M.J.2
-
8
-
-
31844443295
-
Efficiently using prefix-trees in mining frequent itemsets
-
G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In FIMI'03.
-
FIMI'03
-
-
Grahne, G.1
Zhu, J.2
-
9
-
-
0030642745
-
Data mining, hypergraph transversals, and machine learning
-
D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen. Data mining, hypergraph transversals, and machine learning. In PODS'97, pages 209-219.
-
PODS'97
, pp. 209-219
-
-
Gunopulos, D.1
Mannila, H.2
Khardon, R.3
Toivonen, H.4
-
10
-
-
84948968508
-
Discovering all most specific sentences by randomized algorithms
-
D. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific sentences by randomized algorithms. In ICDT'97, pages 215-229.
-
ICDT'97
, pp. 215-229
-
-
Gunopulos, D.1
Mannila, H.2
Saluja, S.3
-
11
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD'00, pages 1-12.
-
SIGMOD'00
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
12
-
-
0028166441
-
Experiments of the effectiveness of dataflow- and controlflow-based test adequacy criteria
-
M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effectiveness of dataflow- and controlflow-based test adequacy criteria. In ICSE'94, pages 191-200.
-
ICSE'94
, pp. 191-200
-
-
Hutchins, M.1
Foster, H.2
Goradia, T.3
Ostrand, T.4
-
13
-
-
34548807026
-
-
J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by opportunistic projection. In KDD'02, pages 239-248.
-
J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by opportunistic projection. In KDD'02, pages 239-248.
-
-
-
-
14
-
-
34548790719
-
-
H. Mannila, H Toivonen, and A. Verkamo. Efficient algorithms for discovering association rules. KDD'94, pages 181-192.
-
H. Mannila, H Toivonen, and A. Verkamo. Efficient algorithms for discovering association rules. KDD'94, pages 181-192.
-
-
-
-
15
-
-
77952367051
-
-
F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki. CARPENTER: Finding closed patterns in long biological datasets. In KDD'03, pages 637-642.
-
F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki. CARPENTER: Finding closed patterns in long biological datasets. In KDD'03, pages 637-642.
-
-
-
-
16
-
-
84911977993
-
Discovering frequent closed itemsets for association rules
-
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In ICDT'99, pages 398-416.
-
ICDT'99
, pp. 398-416
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
17
-
-
0002663971
-
Sampling large databases for association rules
-
H. Toivonen. Sampling large databases for association rules. In VLDB'96, pages 134-145.
-
VLDB'96
, pp. 134-145
-
-
Toivonen, H.1
-
18
-
-
34548784415
-
Lem ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets
-
T. Uno, T. Asai, Y. Uchida, and H. Arimura. Lem ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In FIMI'04.
-
FIMI'04
-
-
Uno, T.1
Asai, T.2
Uchida, Y.3
Arimura, H.4
-
19
-
-
19944376126
-
TFP: An efficient algorithm for mining top-k frequent closed itemsets. TKDE
-
J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining top-k frequent closed itemsets. TKDE, 17:652-664, 2005.
-
(2005)
, vol.17
, pp. 652-664
-
-
Wang, J.1
Han, J.2
Lu, Y.3
Tzvetkov, P.4
-
20
-
-
77952363125
-
-
J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent closed itemsets. In KDD'03, pages 236-245.
-
J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent closed itemsets. In KDD'03, pages 236-245.
-
-
-
-
21
-
-
33745458995
-
Mining compressed frequent-pattern sets
-
D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. In VLDB'05, pages 709-720.
-
VLDB'05
, pp. 709-720
-
-
Xin, D.1
Han, J.2
Yan, X.3
Cheng, H.4
-
22
-
-
34548772392
-
-
M. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In SDM'02, pages 457-473.
-
M. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In SDM'02, pages 457-473.
-
-
-
|