메뉴 건너뛰기




Volumn , Issue , 2007, Pages 706-715

Mining colossal frequent patterns by core pattern fusion

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; BIOINFORMATICS; DATA MINING; MATHEMATICAL MODELS;

EID: 34548760779     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2007.367916     Document Type: Conference Paper
Times cited : (85)

References (22)
  • 1
    • 0027621699 scopus 로고    scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD'93, pages 207-216.
    • SIGMOD'93 , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 2
    • 0002221136 scopus 로고    scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB'94, pages 487-499.
    • VLDB'94 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98, pages 85-93.
    • SIGMOD'98 , pp. 85-93
    • Bayardo, R.1
  • 4
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket analysis
    • S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. In SIGMOD'97, pages 255-264.
    • SIGMOD'97 , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 5
    • 0035007850 scopus 로고    scopus 로고
    • MAFIA: A maximal frequent itemset algorithm for transactional databases
    • ICDE'01
    • D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm for transactional databases. In ICDE'01, pages 443-452.
    • Burdick, D.1    Calimlim, M.2    Gehrke, J.3
  • 6
    • 29844457781 scopus 로고    scopus 로고
    • Mining top-k covering rule groups for gene expression data
    • G. Cong, K. Tan, A. K. H. Tung, and X. Xu. Mining top-k covering rule groups for gene expression data. In SIGMOD'05, pages 670-681.
    • SIGMOD'05 , pp. 670-681
    • Cong, G.1    Tan, K.2    Tung, A.K.H.3    Xu, X.4
  • 7
    • 78149351437 scopus 로고    scopus 로고
    • Efficiently mining maximal frequent itemsets
    • K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In ICDM'01, pages 163-170.
    • ICDM'01 , pp. 163-170
    • Gouda, K.1    Zaki, M.J.2
  • 8
    • 31844443295 scopus 로고    scopus 로고
    • Efficiently using prefix-trees in mining frequent itemsets
    • G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In FIMI'03.
    • FIMI'03
    • Grahne, G.1    Zhu, J.2
  • 9
    • 0030642745 scopus 로고    scopus 로고
    • Data mining, hypergraph transversals, and machine learning
    • D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen. Data mining, hypergraph transversals, and machine learning. In PODS'97, pages 209-219.
    • PODS'97 , pp. 209-219
    • Gunopulos, D.1    Mannila, H.2    Khardon, R.3    Toivonen, H.4
  • 10
    • 84948968508 scopus 로고    scopus 로고
    • Discovering all most specific sentences by randomized algorithms
    • D. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific sentences by randomized algorithms. In ICDT'97, pages 215-229.
    • ICDT'97 , pp. 215-229
    • Gunopulos, D.1    Mannila, H.2    Saluja, S.3
  • 11
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD'00, pages 1-12.
    • SIGMOD'00 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 12
    • 0028166441 scopus 로고    scopus 로고
    • Experiments of the effectiveness of dataflow- and controlflow-based test adequacy criteria
    • M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effectiveness of dataflow- and controlflow-based test adequacy criteria. In ICSE'94, pages 191-200.
    • ICSE'94 , pp. 191-200
    • Hutchins, M.1    Foster, H.2    Goradia, T.3    Ostrand, T.4
  • 13
    • 34548807026 scopus 로고    scopus 로고
    • J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by opportunistic projection. In KDD'02, pages 239-248.
    • J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by opportunistic projection. In KDD'02, pages 239-248.
  • 14
    • 34548790719 scopus 로고    scopus 로고
    • H. Mannila, H Toivonen, and A. Verkamo. Efficient algorithms for discovering association rules. KDD'94, pages 181-192.
    • H. Mannila, H Toivonen, and A. Verkamo. Efficient algorithms for discovering association rules. KDD'94, pages 181-192.
  • 15
    • 77952367051 scopus 로고    scopus 로고
    • F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki. CARPENTER: Finding closed patterns in long biological datasets. In KDD'03, pages 637-642.
    • F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki. CARPENTER: Finding closed patterns in long biological datasets. In KDD'03, pages 637-642.
  • 16
    • 84911977993 scopus 로고    scopus 로고
    • Discovering frequent closed itemsets for association rules
    • N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In ICDT'99, pages 398-416.
    • ICDT'99 , pp. 398-416
    • Pasquier, N.1    Bastide, Y.2    Taouil, R.3    Lakhal, L.4
  • 17
    • 0002663971 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • H. Toivonen. Sampling large databases for association rules. In VLDB'96, pages 134-145.
    • VLDB'96 , pp. 134-145
    • Toivonen, H.1
  • 18
    • 34548784415 scopus 로고    scopus 로고
    • Lem ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets
    • T. Uno, T. Asai, Y. Uchida, and H. Arimura. Lem ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In FIMI'04.
    • FIMI'04
    • Uno, T.1    Asai, T.2    Uchida, Y.3    Arimura, H.4
  • 19
    • 19944376126 scopus 로고    scopus 로고
    • TFP: An efficient algorithm for mining top-k frequent closed itemsets. TKDE
    • J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining top-k frequent closed itemsets. TKDE, 17:652-664, 2005.
    • (2005) , vol.17 , pp. 652-664
    • Wang, J.1    Han, J.2    Lu, Y.3    Tzvetkov, P.4
  • 20
    • 77952363125 scopus 로고    scopus 로고
    • J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent closed itemsets. In KDD'03, pages 236-245.
    • J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent closed itemsets. In KDD'03, pages 236-245.
  • 21
    • 33745458995 scopus 로고    scopus 로고
    • Mining compressed frequent-pattern sets
    • D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. In VLDB'05, pages 709-720.
    • VLDB'05 , pp. 709-720
    • Xin, D.1    Han, J.2    Yan, X.3    Cheng, H.4
  • 22
    • 34548772392 scopus 로고    scopus 로고
    • M. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In SDM'02, pages 457-473.
    • M. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In SDM'02, pages 457-473.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.