메뉴 건너뛰기




Volumn 7, Issue 7, 2012, Pages

Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit

Author keywords

[No Author keywords available]

Indexed keywords

INITIATION FACTOR; INITIATION FACTOR 3; INITIATION FACTOR 3A; MESSENGER RNA; PROTEIN S0A; RIBOSOME PROTEIN; UNCLASSIFIED DRUG;

EID: 84863633085     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0040464     Document Type: Article
Times cited : (28)

References (40)
  • 1
    • 84863624560 scopus 로고    scopus 로고
    • Ribozoomin' - Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs)
    • Valášek LS, (2012) 'Ribozoomin' - Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs). Curr Protein Pept Sci: in press.
    • (2012) Curr Protein Pept Sci
    • Valášek, L.S.1
  • 2
    • 0026723117 scopus 로고
    • mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E
    • Koromilas AE, Lazaris-Karatzas A, Sonenberg N, (1992) mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 11: 4153-4158.
    • (1992) EMBO J , vol.11 , pp. 4153-4158
    • Koromilas, A.E.1    Lazaris-Karatzas, A.2    Sonenberg, N.3
  • 3
    • 0037112055 scopus 로고    scopus 로고
    • The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection
    • Pestova TV, Kolupaeva VG, (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16: 2906-2922.
    • (2002) Genes Dev , vol.16 , pp. 2906-2922
    • Pestova, T.V.1    Kolupaeva, V.G.2
  • 4
    • 32044467711 scopus 로고    scopus 로고
    • Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast
    • Jivotovskaya A, Valášek L, Hinnebusch AG, Nielsen KH, (2006) Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol Cell Biol 26: 1355-1372.
    • (2006) Mol Cell Biol , vol.26 , pp. 1355-1372
    • Jivotovskaya, A.1    Valášek, L.2    Hinnebusch, A.G.3    Nielsen, K.H.4
  • 5
    • 77956940474 scopus 로고    scopus 로고
    • The 5′-7-Methylguanosine Cap on Eukaryotic mRNAs Serves Both to Stimulate Canonical Translation Initiation and to Block an Alternative Pathway
    • Mitchell SF, Walker SE, Algire MA, Park E-H, Hinnebusch AG, et al. (2010) The 5′-7-Methylguanosine Cap on Eukaryotic mRNAs Serves Both to Stimulate Canonical Translation Initiation and to Block an Alternative Pathway. Mol Cell 39: 950-962.
    • (2010) Mol Cell , vol.39 , pp. 950-962
    • Mitchell, S.F.1    Walker, S.E.2    Algire, M.A.3    Park, E.-H.4    Hinnebusch, A.G.5
  • 6
    • 77956657467 scopus 로고    scopus 로고
    • The RNA Recognition Motif of Eukaryotic Translation Initiation Factor 3g (eIF3g) Is Required for Resumption of Scanning of Posttermination Ribosomes for Reinitiation on GCN4 and Together with eIF3i Stimulates Linear Scanning
    • Cuchalová L, Kouba T, Herrmannová A, Danyi I, Chiu W-l, et al. (2010) The RNA Recognition Motif of Eukaryotic Translation Initiation Factor 3g (eIF3g) Is Required for Resumption of Scanning of Posttermination Ribosomes for Reinitiation on GCN4 and Together with eIF3i Stimulates Linear Scanning. Mol Cell Biol 30: 4671-4686.
    • (2010) Mol Cell Biol , vol.30 , pp. 4671-4686
    • Cuchalová, L.1    Kouba, T.2    Herrmannová, A.3    Danyi, I.4    Chiu, W.-l.5
  • 7
    • 1842576663 scopus 로고    scopus 로고
    • Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control
    • Nielsen KH, Szamecz B, Valasek LJ, A., Shin BS, Hinnebusch AG, (2004) Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J 23: 1166-1177.
    • (2004) EMBO J , vol.23 , pp. 1166-1177
    • Nielsen, K.H.1    Szamecz, B.2    Valasek, L.J.3    Shin, B.S.A.4    Hinnebusch, A.G.5
  • 8
    • 6344291066 scopus 로고    scopus 로고
    • Interactions of Eukaryotic Translation Initiation Factor 3 (eIF3) Subunit NIP1/c with eIF1 and eIF5 Promote Preinitiation Complex Assembly and Regulate Start Codon Selection
    • Valášek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG, (2004) Interactions of Eukaryotic Translation Initiation Factor 3 (eIF3) Subunit NIP1/c with eIF1 and eIF5 Promote Preinitiation Complex Assembly and Regulate Start Codon Selection. Mol Cell Biol 24: 9437-9455.
    • (2004) Mol Cell Biol , vol.24 , pp. 9437-9455
    • Valášek, L.1    Nielsen, K.H.2    Zhang, F.3    Fekete, C.A.4    Hinnebusch, A.G.5
  • 9
    • 33645841066 scopus 로고    scopus 로고
    • Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast
    • Nielsen KH, Valášek L, Sykes C, Jivotovskaya A, Hinnebusch AG, (2006) Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol Cell Biol 26: 2984-2998.
    • (2006) Mol Cell Biol , vol.26 , pp. 2984-2998
    • Nielsen, K.H.1    Valášek, L.2    Sykes, C.3    Jivotovskaya, A.4    Hinnebusch, A.G.5
  • 10
    • 77649269977 scopus 로고    scopus 로고
    • The indispensable N-terminal half of eIF3j co-operates with its structurally conserved binding partner eIF3b-RRM and eIF1A in stringent AUG selection
    • ElAntak L, Wagner S, Herrmannová A, Karásková M, Rutkai E, et al. (2010) The indispensable N-terminal half of eIF3j co-operates with its structurally conserved binding partner eIF3b-RRM and eIF1A in stringent AUG selection. J Mol Biol 396: 1097-1116.
    • (2010) J Mol Biol , vol.396 , pp. 1097-1116
    • ElAntak, L.1    Wagner, S.2    Herrmannová, A.3    Karásková, M.4    Rutkai, E.5
  • 11
    • 77956713468 scopus 로고    scopus 로고
    • The C-Terminal Region of Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes mRNA Recruitment, Scanning, and, Together with eIF3j and the eIF3b RNA Recognition Motif, Selection of AUG Start Codons
    • Chiu W-L, Wagner S, Herrmannová A, Burela L, Zhang F, et al. (2010) The C-Terminal Region of Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes mRNA Recruitment, Scanning, and, Together with eIF3j and the eIF3b RNA Recognition Motif, Selection of AUG Start Codons. Mol Cell Biol 30: 4415-4434.
    • (2010) Mol Cell Biol , vol.30 , pp. 4415-4434
    • Chiu, W.-L.1    Wagner, S.2    Herrmannová, A.3    Burela, L.4    Zhang, F.5
  • 12
    • 84863338242 scopus 로고    scopus 로고
    • Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-Initiation complex assembly
    • Herrmannová A, Daujotyte D, Yang JC, Cuchalová L, Gorrec F, et al. (2012) Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-Initiation complex assembly. Nucleic Acids Res 40: 2294-2311.
    • (2012) Nucleic Acids Res , vol.40 , pp. 2294-2311
    • Herrmannová, A.1    Daujotyte, D.2    Yang, J.C.3    Cuchalová, L.4    Gorrec, F.5
  • 13
    • 0034307347 scopus 로고    scopus 로고
    • A multifactor complex of eukaryotic initiation factors eIF1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo
    • Asano K, Clayton J, Shalev A, Hinnebusch AG, (2000) A multifactor complex of eukaryotic initiation factors eIF1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo. Genes Dev 14: 2534-2546.
    • (2000) Genes Dev , vol.14 , pp. 2534-2546
    • Asano, K.1    Clayton, J.2    Shalev, A.3    Hinnebusch, A.G.4
  • 14
    • 84855867417 scopus 로고    scopus 로고
    • The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit
    • Sokabe M, Fraser CS, Hershey JWB, (2011) The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit. Nucleic Acids Research 40: 905-913.
    • (2011) Nucleic Acids Research , vol.40 , pp. 905-913
    • Sokabe, M.1    Fraser, C.S.2    Hershey, J.W.B.3
  • 15
    • 68949149110 scopus 로고    scopus 로고
    • Phosphorylation of Plant Translation Initiation Factors by CK2 Enhances the in Vitro Interaction of Multifactor Complex Components
    • Dennis MD, Person MD, Browning KS, (2009) Phosphorylation of Plant Translation Initiation Factors by CK2 Enhances the in Vitro Interaction of Multifactor Complex Components. J Biol Chem 284: 20615-20628.
    • (2009) J Biol Chem , vol.284 , pp. 20615-20628
    • Dennis, M.D.1    Person, M.D.2    Browning, K.S.3
  • 16
    • 0036846237 scopus 로고    scopus 로고
    • Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo
    • Valášek L, Nielsen KH, Hinnebusch AG, (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21: 5886-5898.
    • (2002) EMBO J , vol.21 , pp. 5886-5898
    • Valášek, L.1    Nielsen, K.H.2    Hinnebusch, A.G.3
  • 17
    • 28044445673 scopus 로고    scopus 로고
    • The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G
    • Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, et al. (2005) The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci U S A 102: 16164-16169.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 16164-16169
    • Yamamoto, Y.1    Singh, C.R.2    Marintchev, A.3    Hall, N.S.4    Hannig, E.M.5
  • 18
    • 0037444342 scopus 로고    scopus 로고
    • The Yeast eIF3 Subunits TIF32/a and NIP1/c and eIF5 Make Critical Connections with the 40S Ribosome in vivo
    • Valášek L, Mathew A, Shin BS, Nielsen KH, Szamecz B, et al. (2003) The Yeast eIF3 Subunits TIF32/a and NIP1/c and eIF5 Make Critical Connections with the 40S Ribosome in vivo. Genes Dev 17: 786-799.
    • (2003) Genes Dev , vol.17 , pp. 786-799
    • Valášek, L.1    Mathew, A.2    Shin, B.S.3    Nielsen, K.H.4    Szamecz, B.5
  • 19
    • 79951510534 scopus 로고    scopus 로고
    • Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1
    • Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N, (2011) Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1. Science 331: 730-736.
    • (2011) Science , vol.331 , pp. 730-736
    • Rabl, J.1    Leibundgut, M.2    Ataide, S.F.3    Haag, A.4    Ban, N.5
  • 20
    • 84857132430 scopus 로고    scopus 로고
    • The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of the pre-initiation complexes
    • Kouba T, Rutkai E, Karasková M, Valášek LS, (2012) The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of the pre-initiation complexes. Nucleic Acids Research 40: 2683-2699.
    • (2012) Nucleic Acids Research , vol.40 , pp. 2683-2699
    • Kouba, T.1    Rutkai, E.2    Karasková, M.3    Valášek, L.S.4
  • 21
    • 51149091031 scopus 로고    scopus 로고
    • eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA
    • Szamecz B, Rutkai E, Cuchalova L, Munzarova V, Herrmannova A, et al. (2008) eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 22: 2414-2425.
    • (2008) Genes Dev , vol.22 , pp. 2414-2425
    • Szamecz, B.1    Rutkai, E.2    Cuchalova, L.3    Munzarova, V.4    Herrmannova, A.5
  • 22
    • 0035798380 scopus 로고    scopus 로고
    • Structure of the 80S ribosome from Saccharomyces cerevisiae - tRNA ribosome and subunit-subunit interactions
    • Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, et al. (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae- tRNA ribosome and subunit-subunit interactions. Cell 107: 373-386.
    • (2001) Cell , vol.107 , pp. 373-386
    • Spahn, C.M.1    Beckmann, R.2    Eswar, N.3    Penczek, P.A.4    Sali, A.5
  • 23
    • 0033083989 scopus 로고    scopus 로고
    • Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits
    • Ford CL, Randal-Whitis L, Ellis SR, (1999) Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res 59: 704-710.
    • (1999) Cancer Res , vol.59 , pp. 704-710
    • Ford, C.L.1    Randal-Whitis, L.2    Ellis, S.R.3
  • 24
    • 15844364296 scopus 로고    scopus 로고
    • Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit
    • Demianova M, Formosa TG, Ellis SR, (1996) Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit. J Biol Chem 271: 11383-11391.
    • (1996) J Biol Chem , vol.271 , pp. 11383-11391
    • Demianova, M.1    Formosa, T.G.2    Ellis, S.R.3
  • 25
    • 78649426085 scopus 로고    scopus 로고
    • Crystal Structure of the Eukaryotic Ribosome
    • Ben-Shem A, Jenner L, Yusupova G, Yusupov M, (2010) Crystal Structure of the Eukaryotic Ribosome. Science 330: 1203-1209.
    • (2010) Science , vol.330 , pp. 1203-1209
    • Ben-Shem, A.1    Jenner, L.2    Yusupova, G.3    Yusupov, M.4
  • 26
    • 38449116475 scopus 로고    scopus 로고
    • In vivo stabilization of preinitiation complexes by formaldehyde cross-linking
    • Valášek L, Szamecz B, Hinnebusch AG, Nielsen KH, (2007) In vivo stabilization of preinitiation complexes by formaldehyde cross-linking. Methods Enzymol 429: 163-183.
    • (2007) Methods Enzymol , vol.429 , pp. 163-183
    • Valášek, L.1    Szamecz, B.2    Hinnebusch, A.G.3    Nielsen, K.H.4
  • 27
    • 75649090139 scopus 로고    scopus 로고
    • Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae
    • Soudet J, Gelugne J-P, Belhabich-Baumas K, Caizergues-Ferrer M, Mougin A, (2010) Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae. EMBO J 29: 80-92.
    • (2010) EMBO J , vol.29 , pp. 80-92
    • Soudet, J.1    Gelugne, J.-P.2    Belhabich-Baumas, K.3    Caizergues-Ferrer, M.4    Mougin, A.5
  • 28
    • 35648956087 scopus 로고    scopus 로고
    • Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins
    • Ferreira-Cerca S, Poll G, Kuhn H, Neueder A, Jakob S, et al. (2007) Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell 28: 446-457.
    • (2007) Mol Cell , vol.28 , pp. 446-457
    • Ferreira-Cerca, S.1    Poll, G.2    Kuhn, H.3    Neueder, A.4    Jakob, S.5
  • 29
    • 34250357112 scopus 로고    scopus 로고
    • 3j is located in the decoding center of the human 40S ribosomal subunit
    • Fraser CS, Berry KE, Hershey JW, Doudna JA, (2007) 3j is located in the decoding center of the human 40S ribosomal subunit. Mol Cell 26: 811-819.
    • (2007) Mol Cell , vol.26 , pp. 811-819
    • Fraser, C.S.1    Berry, K.E.2    Hershey, J.W.3    Doudna, J.A.4
  • 30
    • 0035865256 scopus 로고    scopus 로고
    • Related eIF3 subunits TIF32 and HCR1 interact with an RNA recoginition motif in PRT1 required for eIF3 integrity and ribosome binding
    • Valášek L, Phan L, Schoenfeld LW, Valášková V, Hinnebusch AG, (2001) Related eIF3 subunits TIF32 and HCR1 interact with an RNA recoginition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J 20: 891-904.
    • (2001) EMBO J , vol.20 , pp. 891-904
    • Valášek, L.1    Phan, L.2    Schoenfeld, L.W.3    Valášková, V.4    Hinnebusch, A.G.5
  • 31
    • 77950349471 scopus 로고    scopus 로고
    • Yeast strains with N-terminally truncated ribosomal protein S5: implications for the evolution, structure and function of the Rps5/Rps7 proteins
    • Lumsden T, Bentley AA, Beutler W, Ghosh A, Galkin O, et al. (2010) Yeast strains with N-terminally truncated ribosomal protein S5: implications for the evolution, structure and function of the Rps5/Rps7 proteins. Nucleic Acids Research 38: 1261-1272.
    • (2010) Nucleic Acids Research , vol.38 , pp. 1261-1272
    • Lumsden, T.1    Bentley, A.A.2    Beutler, W.3    Ghosh, A.4    Galkin, O.5
  • 32
    • 79960959927 scopus 로고    scopus 로고
    • Translation Reinitiation Relies on the Interaction between eIF3a/TIF32 and Progressively Folded cis-Acting mRNA Elements Preceding Short uORFs
    • Munzarová V, Pánek J, Gunišová S, Dányi I, Szamecz B, et al. (2011) Translation Reinitiation Relies on the Interaction between eIF3a/TIF32 and Progressively Folded cis-Acting mRNA Elements Preceding Short uORFs. PLoS Genet 7: e1002137.
    • (2011) PLoS Genet , vol.7
    • Munzarová, V.1    Pánek, J.2    Gunišová, S.3    Dányi, I.4    Szamecz, B.5
  • 33
    • 26944450063 scopus 로고    scopus 로고
    • Roles of Eukaryotic Ribosomal Proteins in Maturation and Transport of Pre-18S rRNA and Ribosome Function
    • Ferreira-Cerca S, Pöll G, Gleizes P-E, Tschochner H, Milkereit P, (2005) Roles of Eukaryotic Ribosomal Proteins in Maturation and Transport of Pre-18S rRNA and Ribosome Function. Molecular Cell 20: 263-275.
    • (2005) Molecular Cell , vol.20 , pp. 263-275
    • Ferreira-Cerca, S.1    Pöll, G.2    Gleizes, P.-E.3    Tschochner, H.4    Milkereit, P.5
  • 34
    • 77957813917 scopus 로고    scopus 로고
    • Yeast 18S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation
    • Nemoto N, Singh CR, Udagawa T, Wang S, Thorson E, et al. (2010) Yeast 18S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. Journal of Biological Chemistry: in press.
    • (2010) Journal of Biological Chemistry
    • Nemoto, N.1    Singh, C.R.2    Udagawa, T.3    Wang, S.4    Thorson, E.5
  • 35
    • 0042195847 scopus 로고    scopus 로고
    • New 'marker swap' plasmids for converting selectable markers on budding yeast gene disruptions and plasmids
    • Voth WP, Jiang YW, Stillman DJ, (2003) New 'marker swap' plasmids for converting selectable markers on budding yeast gene disruptions and plasmids. Yeast 20: 985-993.
    • (2003) Yeast , vol.20 , pp. 985-993
    • Voth, W.P.1    Jiang, Y.W.2    Stillman, D.J.3
  • 36
    • 0024266139 scopus 로고
    • New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
    • Gietz RD, Sugino A, (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527-534.
    • (1988) Gene , vol.74 , pp. 527-534
    • Gietz, R.D.1    Sugino, A.2
  • 37
    • 0023806075 scopus 로고
    • Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase
    • Smith DB, Johnson KS, (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31-40.
    • (1988) Gene , vol.67 , pp. 31-40
    • Smith, D.B.1    Johnson, K.S.2
  • 38
    • 38449122331 scopus 로고    scopus 로고
    • In vivo deletion analysis of the architecture of a multi-protein complex of translation initiation factors
    • Nielsen KH, Valášek L, (2007) In vivo deletion analysis of the architecture of a multi-protein complex of translation initiation factors. Methods Enzymol 431: 15-32.
    • (2007) Methods Enzymol , vol.431 , pp. 15-32
    • Nielsen, K.H.1    Valášek, L.2
  • 40
    • 71049158443 scopus 로고    scopus 로고
    • Comprehensive Molecular Structure of the Eukaryotic Ribosome
    • Taylor DJ, Devkota B, Huang AD, Topf M, Narayanan E, et al. (2009) Comprehensive Molecular Structure of the Eukaryotic Ribosome. Structure 17: 1591-1604.
    • (2009) Structure , vol.17 , pp. 1591-1604
    • Taylor, D.J.1    Devkota, B.2    Huang, A.D.3    Topf, M.4    Narayanan, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.