메뉴 건너뛰기




Volumn 3, Issue 1, 2012, Pages 39-49

Soft subspace clustering with an improved feature weight self-adjustment mechanism

Author keywords

Clustering; Data mining; Feature weighting; High dimensional data; Subspace

Indexed keywords

CLUSTERING; CLUSTERING QUALITY; DATA SETS; FEATURE WEIGHT; FEATURE WEIGHTING; HIGH DIMENSIONAL DATA; HIGH DIMENSIONALITY; PARAMETER VALUES; REAL-WORLD APPLICATION; SELF-ADJUSTMENT; SUBSPACE; SUBSPACE CLUSTERING; TRADITIONAL CLUSTERING;

EID: 84863262149     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-011-0038-8     Document Type: Article
Times cited : (13)

References (25)
  • 3
    • 33845501387 scopus 로고    scopus 로고
    • 10 challenging problems in data mining research
    • Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inform Technol Decis Making 5(4): 597-604.
    • (2006) Int J Inform Technol Decis Making , vol.5 , Issue.4 , pp. 597-604
    • Yang, Q.1    Wu, X.2
  • 5
    • 79952984615 scopus 로고    scopus 로고
    • An improved multiple fuzzy NNC system based on mutual information and fuzzy integral
    • Wang LJ (2010) An improved multiple fuzzy NNC system based on mutual information and fuzzy integral. Int J Mach Learn Cybern 2(1): 25-36.
    • (2010) Int J Mach Learn Cybern , vol.2 , Issue.1 , pp. 25-36
    • Wang, L.J.1
  • 6
    • 79952312047 scopus 로고    scopus 로고
    • An efficient gene selection technique for cancer recognition based on neighborhood mutual information
    • Hu QH, Pan W, An S, Ma PJ, Wei JM (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1(1-4): 63-74.
    • (2010) Int J Mach Learn Cybern , vol.1 , Issue.1-4 , pp. 63-74
    • Hu, Q.H.1    Pan, W.2    An, S.3    Ma, P.J.4    Wei, J.M.5
  • 7
    • 79952311308 scopus 로고    scopus 로고
    • Optimal production schedule in declining market for an imperfect production system
    • Shah NH, Shukla KT (2010) Optimal production schedule in declining market for an imperfect production system. Int J Mach Learn Cybern 1(1-4): 89-99.
    • (2010) Int J Mach Learn Cybern , vol.1 , Issue.1-4 , pp. 89-99
    • Shah, N.H.1    Shukla, K.T.2
  • 8
    • 44349127297 scopus 로고    scopus 로고
    • Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm
    • Tsai CY, Chiu CC (2008) Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm. Comput Stat Data Anal 52: 4658-4672.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 4658-4672
    • Tsai, C.Y.1    Chiu, C.C.2
  • 10
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
    • Woo KG, Lee JH, Kim MH, Lee YJ (2004) FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting. Inform Softw Technol 46(4): 255-271.
    • (2004) Inform Softw Technol , vol.46 , Issue.4 , pp. 255-271
    • Woo, K.G.1    Lee, J.H.2    Kim, M.H.3    Lee, Y.J.4
  • 11
    • 13844297591 scopus 로고    scopus 로고
    • A practical projected clustering algorithm
    • Yip KY, Cheung DW, Ng MK (2004) A practical projected clustering algorithm. IEEE Trans Knowl Data Eng 16(11): 1387-1397.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , Issue.11 , pp. 1387-1397
    • Yip, K.Y.1    Cheung, D.W.2    Ng, M.K.3
  • 12
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor Newsl 6(1): 90-105.
    • (2004) ACM SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 13
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • Chan EY, Ching WK, Ng MK, Huang JZ (2004) An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recogn 37(5): 943-952.
    • (2004) Pattern Recogn , vol.37 , Issue.5 , pp. 943-952
    • Chan, E.Y.1    Ching, W.K.2    Ng, M.K.3    Huang, J.Z.4
  • 14
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting K-means algorithm for subspace clustering of high-dimensional sparse data
    • Jing L, Ng MK, Huang JZ (2007) An entropy weighting K-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans Knowl Data Eng 19(8): 1-16.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.8 , pp. 1-16
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 16
    • 26944481948 scopus 로고    scopus 로고
    • Subspace clustering of text documents with feature weighting k-means algorithm
    • Jing L, Ng MK, Xu J, Huang JZ (2005) Subspace clustering of text documents with feature weighting k-means algorithm. Adv Knowl Discov Data Mining 3518: 802-812.
    • (2005) Adv Knowl Discov Data Mining , vol.3518 , pp. 802-812
    • Jing, L.1    Ng, M.K.2    Xu, J.3    Huang, J.Z.4
  • 17
    • 33749402881 scopus 로고    scopus 로고
    • A fuzzy subspace algorithm for clustering high dimensional data
    • X. Li, O. Zaiane, and Z. Li (Eds.), Berlin: Springer
    • Gan G, Wu J, Yang Z (2006) A fuzzy subspace algorithm for clustering high dimensional data. In: Li X, Zaiane O, Li Z (eds) Lecture notes in artificial intelligence 4093. Springer, Berlin, pp 271-278.
    • (2006) Lecture Notes in Artificial Intelligence 4093 , pp. 271-278
    • Gan, G.1    Wu, J.2    Yang, Z.3
  • 18
    • 38949102340 scopus 로고    scopus 로고
    • A convergence theorem for the fuzzy subspace clustering algorithm
    • Gan G, Wu J (2008) A convergence theorem for the fuzzy subspace clustering algorithm. Pattern Recogn 41: 1939-1947.
    • (2008) Pattern Recogn , vol.41 , pp. 1939-1947
    • Gan, G.1    Wu, J.2
  • 19
    • 70449699648 scopus 로고    scopus 로고
    • Enhanced soft subspace clustering integrating within-cluster and between-cluster information
    • Deng Z, Choi KS, Chung FL, Wang S (2010) Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recogn 43: 767-781.
    • (2010) Pattern Recogn , vol.43 , pp. 767-781
    • Deng, Z.1    Choi, K.S.2    Chung, F.L.3    Wang, S.4
  • 21
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes
    • Friedman JH, Meulman JJ (2004) Clustering objects on subsets of attributes. J R Stat Soc B 66(4): 815-849.
    • (2004) J R Stat Soc B , vol.66 , Issue.4 , pp. 815-849
    • Friedman, J.H.1    Meulman, J.J.2
  • 22
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and attribute weights
    • Frigui H, Nasraoui O (2004) Unsupervised learning of prototypes and attribute weights. Pattern Recogn 37(3): 567-581.
    • (2004) Pattern Recogn , vol.37 , Issue.3 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 24
    • 36948999941 scopus 로고    scopus 로고
    • School of Information and Computer Science, CA: University of California, Irvine
    • Asuncion A, Newman D J (2007) UCI Machine Learning Repository. School of Information and Computer Science, CA: University of California, Irvine. http://www. ics. uci. edu/~mlearn/MLRepository. html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 25
    • 0035789299 scopus 로고    scopus 로고
    • Proc. of ACM International Conference on Knowledge Discovery and Data Mining
    • In, ACM Press
    • Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams, In Proc. of ACM International Conference on Knowledge Discovery and Data Mining, ACM Press: 97-106.
    • (2001) Mining time-changing data streams , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.