메뉴 건너뛰기




Volumn 59, Issue 2, 2012, Pages 504-514

Cross validation for selection of cortical interaction models from scalp EEG or MEG

Author keywords

Cross validation (CV); effective connectivity; Granger causality; model selection; state space model

Indexed keywords

CROSS VALIDATION; EFFECTIVE CONNECTIVITY; GRANGER CAUSALITY; MODEL SELECTION; STATE-SPACE MODELS;

EID: 84862948880     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2011.2174991     Document Type: Article
Times cited : (16)

References (48)
  • 1
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: A review
    • K. Friston, "Functional and effective connectivity: A review," Brain Connect, vol. 1, no. 1, pp. 13-36, 2011.
    • (2011) Brain Connect , vol.1 , Issue.1 , pp. 13-36
    • Friston, K.1
  • 2
    • 0032833351 scopus 로고    scopus 로고
    • Investigation of cooperative cortical dynamics by multivariate autoregressive modeling of event-related local field potentials
    • S. Bressler, M. Ding, and W. Yang, "Investigation of cooperative cortical dynamics by multivariate autoregressive modeling of event-related local field potentials," Neurocomputing, vol. 26-27, pp. 625-631, 1999.
    • (1999) Neurocomputing , vol.26-27 , pp. 625-631
    • Bressler, S.1    Ding, M.2    Yang, W.3
  • 3
    • 0033190863 scopus 로고    scopus 로고
    • On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings
    • C. Bernasconi and P. Konig, "On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings," Biol. Cybern., vol. 81, pp. 199-210, 1999.
    • (1999) Biol. Cybern. , vol.81 , pp. 199-210
    • Bernasconi, C.1    Konig, P.2
  • 4
    • 3042795832 scopus 로고    scopus 로고
    • Beta osciallations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality
    • A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. Bressler, "Beta osciallations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality," Proc. Nat. Acad. Sci., vol. 101, no. 26, pp. 9849-9854, 2004.
    • (2004) Proc. Nat. Acad. Sci. , vol.101 , Issue.26 , pp. 9849-9854
    • Brovelli, A.1    Ding, M.2    Ledberg, A.3    Chen, Y.4    Nakamura, R.5    Bressler, S.6
  • 6
    • 77956079564 scopus 로고    scopus 로고
    • Nonlinear connectivity by Granger causality
    • D. Marinazzo, W. Liao, H. Chen, and S. Stramaglia, "Nonlinear connectivity by Granger causality," NeuroImage, vol. 58, pp. 330-338, 2010.
    • (2010) NeuroImage , vol.58 , pp. 330-338
    • Marinazzo, D.1    Liao, W.2    Chen, H.3    Stramaglia, S.4
  • 7
    • 0034076273 scopus 로고    scopus 로고
    • A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning
    • D. Nykamp and D. Tranchina, "A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning," J. Comput. Neurosci., vol. 8, pp. 19-50, 2000.
    • (2000) J. Comput. Neurosci. , vol.8 , pp. 19-50
    • Nykamp, D.1    Tranchina, D.2
  • 8
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • K. J. Friston, L. Harrison, and W. Penny, "Dynamic causal modelling," NeuroImage, vol. 19, pp. 1273-1302, 2003.
    • (2003) NeuroImage , vol.19 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 9
    • 0345415009 scopus 로고    scopus 로고
    • A neural mass model for MEG/EEG: Coupling and neuronal dynamics
    • O.David and K. J. Friston, "A neural mass model for MEG/EEG:Coupling and neuronal dynamics," NeuroImage, vol. 20, pp. 1743-1755, 2003.
    • (2003) NeuroImage , vol.20 , pp. 1743-1755
    • David, O.1    Friston, K.J.2
  • 11
    • 73849123482 scopus 로고    scopus 로고
    • Identifying true cortical interactions in MEG using the nulling beam former
    • Feb
    • H. Hui, D. Pantazis, S. Bressler, and R. Leahy, "Identifying true cortical interactions inMEGusing the nulling beamformer," NeuroImage, vol. 49, pp. 3161-3174, Feb. 2010.
    • (2010) NeuroImage , vol.49 , pp. 3161-3174
    • Hui, H.1    Pantazis, D.2    Bressler, S.3    Leahy, R.4
  • 12
    • 77955870182 scopus 로고    scopus 로고
    • Estimation of cortical connectivity from EEG using state-space models
    • Sep
    • B. L. Cheung, B. Riedner, G. Tononi, and B. Van Veen, "Estimation of cortical connectivity from EEG using state-space models," IEEE Trans. Biomed. Eng., vol. 57, no. 9, pp. 2122-2134, Sep. 2010.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.9 , pp. 2122-2134
    • Cheung, B.L.1    Riedner, B.2    Tononi, G.3    Van Veen, B.4
  • 14
    • 77950526043 scopus 로고    scopus 로고
    • A dynamic causal model study of neuronal population dynamics
    • A. C. Marreiros, S. J. Kiebel, and K. J. Friston, "A dynamic causal model study of neuronal population dynamics," NeuroImage, vol. 51, pp. 91-101, 2010.
    • (2010) NeuroImage , vol.51 , pp. 91-101
    • Marreiros, A.C.1    Kiebel, S.J.2    Friston, K.J.3
  • 15
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec
    • H. Akaike, "A new look at the statistical model identification, " IEEE Trans. Automat. Control, vol. AC-19, no. 6, pp. 716-723, Dec. 1974.
    • (1974) IEEE Trans. Automat. Control , vol.AC-19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Ann. Stat., vol. 6, pp. 461-464, 1978.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 17
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • B. Efron, "Estimating the error rate of a prediction rule: improvement on cross-validation," J. Amer. Stat. Assoc., vol. 78, pp. 316-331, 1983.
    • (1983) J. Amer. Stat. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1
  • 18
    • 0002226399 scopus 로고    scopus 로고
    • Bayesian model selection and model averaging
    • L.Wasserman, "Bayesian model selection and model averaging," J.Math. Psychol., vol. 44, pp. 92-107, 2000.
    • (2000) J. Math. Psychol. , vol.44 , pp. 92-107
    • Wasserman, L.1
  • 19
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone, "Cross-validatory choice and assessment of statistical predictions," J. Royal Stat. Soc., Series B, vol. 36, no. 2, pp. 111-147, 1974.
    • (1974) J. Royal Stat. Soc., Series B , vol.36 , Issue.2 , pp. 111-147
    • Stone, M.1
  • 20
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • S. Geisser, "The predictive sample reuse method with applications," J. Amer. Stat. Assoc., no. 350, pp. 320-328, 1975.
    • (1975) J. Amer. Stat. Assoc. , Issue.350 , pp. 320-328
    • Geisser, S.1
  • 21
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • J. Shao, "Linear model selection by cross-validation," J. Amer. Stat. Assoc., vol. 88, no. 422, pp. 486-494, 1993.
    • (1993) J. Amer. Stat. Assoc. , vol.88 , Issue.422 , pp. 486-494
    • Shao, J.1
  • 22
    • 50849091035 scopus 로고    scopus 로고
    • Oracle inequalities for multi-fold cross validation
    • A.W. van derVaart, S. Dudoit, andM. J. van der Laan, "Oracle inequalities for multi-fold cross validation," Stat. Decis., vol. 24, no. 3, pp. 351-371, 2006.
    • (2006) Stat. Decis. , vol.24 , Issue.3 , pp. 351-371
    • Vaart Der Van, A.W.1    Dudoit, S.2    Laan Der Van, M.J.3
  • 24
  • 25
    • 0034306052 scopus 로고    scopus 로고
    • Current multipole expansion to estimate lateral extent of neuronal activity: A theoretical analysis
    • Oct
    • G. Nolte and G. Curio, "Current multipole expansion to estimate lateral extent of neuronal activity: A theoretical analysis," IEEE Trans. Biomed. Eng., vol. 47, no. 10, pp. 1347-1355, Oct. 2000.
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , Issue.10 , pp. 1347-1355
    • Nolte, G.1    Curio, G.2
  • 26
    • 33747866626 scopus 로고    scopus 로고
    • Cortical patch basis model for spatially extended neural activity
    • Sep
    • T. Limpiti, B. Van Veen, and R. Wakai, "Cortical patch basis model for spatially extended neural activity," IEEE Trans. Biomed. Eng., vol. 53, no. 9, pp. 1740-1754, Sep. 2006.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , Issue.9 , pp. 1740-1754
    • Limpiti, T.1    Van Veen, B.2    Wakai, R.3
  • 27
    • 0011520418 scopus 로고
    • Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter
    • D. Stoffer and K.Wall, "Bootstrapping state-space models:Gaussian maximum likelihood estimation and the Kalman filter," J. Amer. Stat. Assoc., vol. 86, no. 416, pp. 1024-1033, 1991.
    • (1991) J. Amer. Stat. Assoc. , vol.86 , Issue.416 , pp. 1024-1033
    • Stoffer, D.1    Wall, K.2
  • 28
    • 3142749297 scopus 로고    scopus 로고
    • Kalman filters
    • S. Haykin, Ed. New York: Wiley, ch. 1
    • S. Haykin, "Kalman filters," in Kalman Filtering and Neural Networks, S. Haykin, Ed. New York: Wiley, 2001, ch. 1, pp. 1-21.
    • (2001) Kalman Filtering and Neural Networks , pp. 1-21
    • Haykin, S.1
  • 30
    • 0001460136 scopus 로고    scopus 로고
    • On sequential monte carlo sampling methods for bayesian filtering
    • A. Doucet, S. J. Godsill, and C. Andrieu, "On sequential monte carlo sampling methods for bayesian filtering," Stat. Comput., vol. 10, no. 3, pp. 197-208, 2000.
    • (2000) Stat. Comput. , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 32
    • 80051616396 scopus 로고    scopus 로고
    • Estimation of cortical connectivity from E/MEG using nonlinear state-space models
    • Prague, Czech Republic, May
    • B. L. Cheung and B. Van Veen, "Estimation of cortical connectivity from E/MEG using nonlinear state-space models," in Proc. 36th Int. Conf. Acoust., Speech Signal Process., Prague, Czech Republic, May 2011, pp. 769-772.
    • (2011) Proc. 36th Int. Conf. Acoust., Speech Signal Process , pp. 769-772
    • Cheung, B.L.1    Van Veen, B.2
  • 33
    • 34548436202 scopus 로고    scopus 로고
    • Cortical functional network organization from autoregressive modeling of local field potential oscillations
    • S. Bressler, C. Richter, Y. Chen, and M. Ding, "Cortical functional network organization from autoregressive modeling of local field potential oscillations," Stat. Med., vol. 26, pp. 3875-3885, 2007.
    • (2007) Stat. Med. , vol.26 , pp. 3875-3885
    • Bressler, S.1    Richter, C.2    Chen, Y.3    Ding, M.4
  • 34
    • 33645719651 scopus 로고    scopus 로고
    • An invariance property of predictors in kernel-induced hypothesis spaces
    • N. Ancona and S. Stramaglia, "An invariance property of predictors in kernel-induced hypothesis spaces," Neural Comput., vol. 18, no. 4, pp. 749-759, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.4 , pp. 749-759
    • Ancona, N.1    Stramaglia, S.2
  • 35
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • J. Park and I. W. Sandberg, "Universal approximation using radial-basis function networks," Neural Comput., vol. 3, pp. 246-257, 1991.
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 36
    • 41349110615 scopus 로고    scopus 로고
    • Radial basis function approach to nonlinear Granger causality of time series
    • N. Ancona, D. Marinazzo, and S. Stramaglia, "Radial basis function approach to nonlinear Granger causality of time series," Phys. Rev. E, vol. 70, pp. 56 221-56 227, 2004.
    • (2004) Phys. Rev. e , vol.70 , pp. 56221-56227
    • Ancona, N.1    Marinazzo, D.2    Stramaglia, S.3
  • 37
    • 84984552597 scopus 로고    scopus 로고
    • Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
    • Sep
    • B. Van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linearly constrained minimum variance spatial filtering," IEEE Trans. Biomed. Eng., vol. 44, no. 9, pp. 867-880, Sep. 1997.
    • (1997) IEEE Trans. Biomed. Eng. , vol.44 , Issue.9 , pp. 867-880
    • Van Veen, B.1    Van Drongelen, W.2    Yuchtman, M.3    Suzuki, A.4
  • 38
    • 84889407828 scopus 로고    scopus 로고
    • Granger causality: Basic theory and application to neuroscience
    • B. Schelter, M. Winterhalder, and J. Timmer, Eds. Weinheim, Germany: Wiley, ch. 17
    • M. Ding, Y. Chen, and L. Bressler, "Granger causality: Basic theory and application to neuroscience," in Handbook of Time Series Analysis, B. Schelter, M. Winterhalder, and J. Timmer, Eds. Weinheim, Germany: Wiley, 2006, ch. 17, pp. 437-459.
    • (2006) Handbook of Time Series Analysis , pp. 437-459
    • Ding, M.1    Chen, Y.2    Bressler, L.3
  • 40
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the em algorithm
    • R. Shumway and D. Stoffer, "An approach to time series smoothing and forecasting using the EM algorithm," J. Time Series Anal., vol. 3, no. 4, pp. 253-264, 1982.
    • (1982) J. Time Series Anal. , vol.3 , Issue.4 , pp. 253-264
    • Shumway, R.1    Stoffer, D.2
  • 41
    • 1842702843 scopus 로고    scopus 로고
    • Learning nonlinear dynamical system using the expectation-maximization algorithm
    • S. Haykin, Ed. New York: Wiley, ch. 6
    • S. Roweis and Z. Ghahramani, "Learning nonlinear dynamical system using the expectation-maximization algorithm," in Kalman Filtering and Neural Networks, S.Haykin, Ed. NewYork:Wiley, 2001, ch. 6, pp. 175-220.
    • (2001) Kalman Filtering and Neural Networks , pp. 175-220
    • Roweis, S.1    Ghahramani, Z.2
  • 42
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Royal Stat. Soc., Series B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Stat. Soc., Series B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 43
    • 21644483999 scopus 로고
    • Maximum likelihood estimates of linear dynamic systems
    • H. Rauch, F. Tung, and C. Stiebel, "Maximum likelihood estimates of linear dynamic systems," AIAA J., vol. 3, pp. 1445-1450, 1965.
    • (1965) AIAA J. , vol.3 , pp. 1445-1450
    • Rauch, H.1    Tung, F.2    Stiebel, C.3
  • 44
    • 0000528223 scopus 로고    scopus 로고
    • Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble
    • S. Schiff, P. So, T. Chang, R. Burke, and T. Sauer, "Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble," Phys. Rev. E, vol. 54, no. 6, pp. 6708-6724, 1996.
    • (1996) Phys. Rev. e , vol.54 , Issue.6 , pp. 6708-6724
    • Schiff, S.1    So, P.2    Chang, T.3    Burke, R.4    Sauer, T.5
  • 45
    • 4544368230 scopus 로고    scopus 로고
    • Directed interactions between visual areas and their role in processing image structure and expectancy
    • R. Salazar, P. Konig, and C. Kayser, "Directed interactions between visual areas and their role in processing image structure and expectancy," Eur. J. Neurosci., vol. 20, pp. 1391-1401, 2004.
    • (2004) Eur. J. Neurosci. , vol.20 , pp. 1391-1401
    • Salazar, R.1    Konig, P.2    Kayser, C.3
  • 46
    • 85032762613 scopus 로고    scopus 로고
    • Model-order selection
    • Jul
    • P. Stoica and Y. Selen, "Model-order selection," IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36-47, Jul. 2004.
    • (2004) IEEE Signal Process. Mag. , vol.21 , Issue.4 , pp. 36-47
    • Stoica, P.1    Selen, Y.2
  • 47
    • 31344435870 scopus 로고    scopus 로고
    • Frequency decomposition of conditional granger causality and application to multivariate neural field potential data
    • Y. Chen, S. Bressler, and M. Ding, "Frequency decomposition of conditional granger causality and application to multivariate neural field potential data," J. Neurosci. Methods, vol. 150, pp. 228-237, 2006.
    • (2006) J. Neurosci. Methods , vol.150 , pp. 228-237
    • Chen, Y.1    Bressler, S.2    Ding, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.