-
4
-
-
34249040591
-
Fractional diffusion equation with an absorbent term and a linear external force: exact solution
-
Schot A., Lenzi M.K., Evangelista L.R., Malacarne L.C., Mendes R.S., Lenzi E.K. Fractional diffusion equation with an absorbent term and a linear external force: exact solution. Phys. Lett. A 2007, 366:346-350.
-
(2007)
Phys. Lett. A
, vol.366
, pp. 346-350
-
-
Schot, A.1
Lenzi, M.K.2
Evangelista, L.R.3
Malacarne, L.C.4
Mendes, R.S.5
Lenzi, E.K.6
-
5
-
-
0035359131
-
A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain
-
Agrawal O.P. A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput. Struct. 2001, 79:1479-1501.
-
(2001)
Comput. Struct.
, vol.79
, pp. 1479-1501
-
-
Agrawal, O.P.1
-
6
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a bounded domain
-
Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 2002, 29:145-155.
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
-
7
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
8
-
-
84856483924
-
Stability and convergence of Crank-Nicolson method for fractional advection dispersion equation
-
Abu-Saman A.M., Assaf A.M. Stability and convergence of Crank-Nicolson method for fractional advection dispersion equation. Adv. Appl. Math. Anal. 2007, 2:117-125.
-
(2007)
Adv. Appl. Math. Anal.
, vol.2
, pp. 117-125
-
-
Abu-Saman, A.M.1
Assaf, A.M.2
-
9
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
10
-
-
79957886188
-
A fast characteristic finite difference method for fractional advection-diffusion equations
-
Wang K.X., Wang H. A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 2011, 34:810-816.
-
(2011)
Adv. Water Resour.
, vol.34
, pp. 810-816
-
-
Wang, K.X.1
Wang, H.2
-
11
-
-
25444472344
-
An explicit finite difference method and a new von-Neumann-type stability analysis for fractional diffusion equations
-
Yuste S.B., Acedo L. An explicit finite difference method and a new von-Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
12
-
-
78649924907
-
An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form
-
Yuste S.B. An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlinear Dyn. 2011, 6. 10.1115/1.4002687.
-
(2011)
J. Comput. Nonlinear Dyn.
, vol.6
-
-
Yuste, S.B.1
-
13
-
-
77952839273
-
On three explicit difference schemes for fractional diffusion and diffusion-wave equations
-
Murillo J.Q., Yuste S.B. On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scr. 2009, 10.1088/0031-8949/2009/T136/014025.
-
(2009)
Phys. Scr.
-
-
Murillo, J.Q.1
Yuste, S.B.2
-
14
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
15
-
-
0345448323
-
Numerical methods for the solution of partial differential equations of fractional order
-
Lynch V., Carreras B., Castillo-Negrete D., Ferreira-Mejias K., Hicks H. Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 2003, 192:406-421.
-
(2003)
J. Comput. Phys.
, vol.192
, pp. 406-421
-
-
Lynch, V.1
Carreras, B.2
Castillo-Negrete, D.3
Ferreira-Mejias, K.4
Hicks, H.5
-
16
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
17
-
-
51749116733
-
Finite difference approximations for the fractional Fokker-Planck equation
-
Chen S., Liu F., Zhuang P., Anh V. Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 2009, 33:256-273.
-
(2009)
Appl. Math. Model.
, vol.33
, pp. 256-273
-
-
Chen, S.1
Liu, F.2
Zhuang, P.3
Anh, V.4
-
18
-
-
84867978055
-
Implicit difference approximation for the time fractional diffusion equation
-
Zhuang P., Liu F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 2006, 22:87-99.
-
(2006)
J. Appl. Math. Comput.
, vol.22
, pp. 87-99
-
-
Zhuang, P.1
Liu, F.2
-
19
-
-
46049100549
-
A fractional-order implicit difference approximation for the space-time fractional diffusion equation
-
Liu F., Zhuang P., Anh V., Turner I. A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 2006, 47:C48-C68.
-
(2006)
ANZIAM J.
, vol.47
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
-
20
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
21
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
Chen C., Liu F., Turner I., Anh V. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1740-1760
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
22
-
-
79251616666
-
An implicit RBF meshless approach for time fractional diffusion equations
-
Liu Q., Gu Y., Zhang P., Liu F., Nie Y. An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 2011, 48:1-12.
-
(2011)
Comput. Mech.
, vol.48
, pp. 1-12
-
-
Liu, Q.1
Gu, Y.2
Zhang, P.3
Liu, F.4
Nie, Y.5
-
23
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun Z.Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.2
-
24
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T., Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.1
Henry, B.2
-
25
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
26
-
-
77952888765
-
A compact difference scheme for the fractional diffusion-wave equation
-
Du R., Cao W., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 2998-3007
-
-
Du, R.1
Cao, W.2
Sun, Z.Z.3
-
27
-
-
78649334165
-
A compact finite difference scheme for the fractional sub-diffusion equations
-
Gao G.H., Sun Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 586-595
-
-
Gao, G.H.1
Sun, Z.Z.2
-
28
-
-
33646191893
-
Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
-
Roop J.P. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 2006, 193:243-268.
-
(2006)
J. Comput. Appl. Math.
, vol.193
, pp. 243-268
-
-
Roop, J.P.1
-
29
-
-
59349113701
-
Finite element method for the space and time fractional Fokker-Planck equation
-
Deng W. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 204-226
-
-
Deng, W.1
-
30
-
-
0036650850
-
Time fractional diffusion: A discrete random walk approach
-
Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: A discrete random walk approach. Nonlinear Dyn. 2002, 29:129-143.
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 129-143
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Paradisi, P.4
-
31
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
32
-
-
77954143774
-
Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
-
Li X., Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 2010, 8:1016-1051.
-
(2010)
Commun. Comput. Phys.
, vol.8
, pp. 1016-1051
-
-
Li, X.1
Xu, C.2
-
33
-
-
33747333025
-
Rectangular decomposition method for fractional diffusion-wave equations
-
Odibat Z. Rectangular decomposition method for fractional diffusion-wave equations. Appl. Math. Comput. 2006, 179:92-97.
-
(2006)
Appl. Math. Comput.
, vol.179
, pp. 92-97
-
-
Odibat, Z.1
-
34
-
-
76449102580
-
Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation
-
El-Sayed A., Behiry S., Raslan W. Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation. Comput. Math. Appl. 2010, 59:1759-1765.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1759-1765
-
-
El-Sayed, A.1
Behiry, S.2
Raslan, W.3
-
35
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
Momani S., Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365:345-350.
-
(2007)
Phys. Lett. A
, vol.365
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
36
-
-
79251619563
-
Analytical approach to Fokker-Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method
-
Yildirim A. Analytical approach to Fokker-Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method. J. King Saud Univ. (Science) 2010, 22:257-264.
-
(2010)
J. King Saud Univ. (Science)
, vol.22
, pp. 257-264
-
-
Yildirim, A.1
-
37
-
-
33745712076
-
An approximate method for numerical solution of fractional differential equations
-
Kumar P., Agrawal O.P. An approximate method for numerical solution of fractional differential equations. Signal Process. 2006, 86:2602-2610.
-
(2006)
Signal Process.
, vol.86
, pp. 2602-2610
-
-
Kumar, P.1
Agrawal, O.P.2
-
38
-
-
73449097072
-
Approximate solution of the fractional advection-dispersion equation
-
Jiang W., Lin Y. Approximate solution of the fractional advection-dispersion equation. Comput. Phys. Commun. 2010, 181:557-561.
-
(2010)
Comput. Phys. Commun.
, vol.181
, pp. 557-561
-
-
Jiang, W.1
Lin, Y.2
-
39
-
-
70350564868
-
The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
-
Odibat Z., Momani S. The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 2009, 58:2199-2208.
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
40
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Lin X., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225:1533-1552.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, X.1
Xu, C.2
-
41
-
-
79955669422
-
Finite dfiference/specrtal approximations for the fractional cable equation
-
Lin Y., Li X., Xu C. Finite dfiference/specrtal approximations for the fractional cable equation. Math. Comput. 2011, 80:1369-1396.
-
(2011)
Math. Comput.
, vol.80
, pp. 1369-1396
-
-
Lin, Y.1
Li, X.2
Xu, C.3
-
42
-
-
84862791676
-
Fractional order differential inclusions on the half-line
-
Benchohra M., Hamidi N. Fractional order differential inclusions on the half-line. Surv. Math. Appl. 2010, 5:99-111.
-
(2010)
Surv. Math. Appl.
, vol.5
, pp. 99-111
-
-
Benchohra, M.1
Hamidi, N.2
-
43
-
-
79551587558
-
Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half-line
-
Agarwal R.P., Benchohra M., Hamani S., Pinelas S. Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half-line. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2011, 18:235-244.
-
(2011)
Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.
, vol.18
, pp. 235-244
-
-
Agarwal, R.P.1
Benchohra, M.2
Hamani, S.3
Pinelas, S.4
-
44
-
-
71649104924
-
Fractional order differential equations on an unbounded domain
-
Arara A., Benchohra M., Hamidi N., Nieto J.J. Fractional order differential equations on an unbounded domain. Nonlinear Anal. 2010, 72:580-586.
-
(2010)
Nonlinear Anal.
, vol.72
, pp. 580-586
-
-
Arara, A.1
Benchohra, M.2
Hamidi, N.3
Nieto, J.J.4
-
46
-
-
70350663279
-
Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions
-
Langlands T., Henry B., Wearne S. Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 2009, 59:761-808.
-
(2009)
J. Math. Biol.
, vol.59
, pp. 761-808
-
-
Langlands, T.1
Henry, B.2
Wearne, S.3
-
47
-
-
77952243763
-
Finite domain anomalous spreading consistent with first and second laws
-
Valkó P.P., Zhang X.H. Finite domain anomalous spreading consistent with first and second laws. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15:3455-3470.
-
(2010)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.15
, pp. 3455-3470
-
-
Valkó, P.P.1
Zhang, X.H.2
-
48
-
-
30244460855
-
The fundamental solutions for the fractional diffusion-wave equation
-
Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
-
(1996)
Appl. Math. Lett.
, vol.9
, pp. 23-28
-
-
Mainardi, F.1
-
49
-
-
0000009397
-
Analytical properties and applications of the Wright function
-
Gorenflo R., Luchko Y., Mainardi F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2:383-414.
-
(1999)
Fract. Calc. Appl. Anal.
, vol.2
, pp. 383-414
-
-
Gorenflo, R.1
Luchko, Y.2
Mainardi, F.3
-
50
-
-
0000637294
-
Approximation of infinite boundary condition and its application to finite element methods
-
Han H.D., Wu X.N. Approximation of infinite boundary condition and its application to finite element methods. J. Comput. Math. 1985, 3:179-192.
-
(1985)
J. Comput. Math.
, vol.3
, pp. 179-192
-
-
Han, H.D.1
Wu, X.N.2
-
51
-
-
0036498981
-
A class of artificial boundary conditions for heat equation in unbounded domains
-
Han H.D., Huang Z.Y. A class of artificial boundary conditions for heat equation in unbounded domains. Comput. Math. Appl. 2002, 43:889-900.
-
(2002)
Comput. Math. Appl.
, vol.43
, pp. 889-900
-
-
Han, H.D.1
Huang, Z.Y.2
-
52
-
-
2442665695
-
Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions
-
Wu X.N., Sun Z.Z. Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Numer. Math. 2004, 50:261-277.
-
(2004)
Appl. Numer. Math.
, vol.50
, pp. 261-277
-
-
Wu, X.N.1
Sun, Z.Z.2
-
53
-
-
0036727940
-
Exact and approximating boundary conditions for the parabolic problems on unbounded domains
-
Han H.D., Huang Z.Y. Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Comput. Math. Appl. 2002, 44:655-666.
-
(2002)
Comput. Math. Appl.
, vol.44
, pp. 655-666
-
-
Han, H.D.1
Huang, Z.Y.2
-
54
-
-
25844459001
-
Numerical solutions of parabolic problems on unbounded 3-d spatial domain
-
Han H.D., Yin D.S. Numerical solutions of parabolic problems on unbounded 3-d spatial domain. J. Comput. Math. 2005, 23:449-462.
-
(2005)
J. Comput. Math.
, vol.23
, pp. 449-462
-
-
Han, H.D.1
Yin, D.S.2
-
55
-
-
28844493429
-
A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain
-
Han H.D., Jin J.C., Wu X.N. A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain. Comput. Math. Appl. 2005, 50:1345-1362.
-
(2005)
Comput. Math. Appl.
, vol.50
, pp. 1345-1362
-
-
Han, H.D.1
Jin, J.C.2
Wu, X.N.3
-
56
-
-
33644537715
-
The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions
-
Sun Z.Z., Wu X. The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 2006, 214:209-223.
-
(2006)
J. Comput. Phys.
, vol.214
, pp. 209-223
-
-
Sun, Z.Z.1
Wu, X.2
-
57
-
-
33750634095
-
The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions
-
Sun Z.Z. The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 2006, 219:879-898.
-
(2006)
J. Comput. Phys.
, vol.219
, pp. 879-898
-
-
Sun, Z.Z.1
-
58
-
-
33750189006
-
Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
-
Antoine X. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. SIAM J. Sci. Comput. 2006, 43:2272-2293.
-
(2006)
SIAM J. Sci. Comput.
, vol.43
, pp. 2272-2293
-
-
Antoine, X.1
-
59
-
-
51149087560
-
A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations
-
Antoine X., Arnold A., Besse C., Ehrhardt M., Schädle A. A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 2008, 4:729-796.
-
(2008)
Commun. Comput. Phys.
, vol.4
, pp. 729-796
-
-
Antoine, X.1
Arnold, A.2
Besse, C.3
Ehrhardt, M.4
Schädle, A.5
-
60
-
-
44149093155
-
Artificial boundary conditions for the Stokes and Navier-Stokes equations in domains that are layer-like at infinity
-
Nazarov S.A., Specovius-Neugebauer M. Artificial boundary conditions for the Stokes and Navier-Stokes equations in domains that are layer-like at infinity. Z. Anal. Anwend. 2008, 27:125-155.
-
(2008)
Z. Anal. Anwend.
, vol.27
, pp. 125-155
-
-
Nazarov, S.A.1
Specovius-Neugebauer, M.2
-
61
-
-
21844440830
-
The numerical solution of parabolic Volterra integro-differential equations on unbounded spatial domains
-
Han H.D., Zhu L., Brunner H., Ma J.T. The numerical solution of parabolic Volterra integro-differential equations on unbounded spatial domains. Appl. Numer. Math. 2005, 55:83-99.
-
(2005)
Appl. Numer. Math.
, vol.55
, pp. 83-99
-
-
Han, H.D.1
Zhu, L.2
Brunner, H.3
Ma, J.T.4
-
62
-
-
33747329897
-
Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains
-
Han H.D., Zhu L., Brunner H., Ma J.T. Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains. J. Comput. Appl. Math. 2006, 197:406-420.
-
(2006)
J. Comput. Appl. Math.
, vol.197
, pp. 406-420
-
-
Han, H.D.1
Zhu, L.2
Brunner, H.3
Ma, J.T.4
-
63
-
-
63549087831
-
An analysis of the finite-difference method for one-dimensional Klein-Gordon equation on unbounded domain
-
Han H.D., Zhang Z.W. An analysis of the finite-difference method for one-dimensional Klein-Gordon equation on unbounded domain. Appl. Numer. Math. 2009, 59:1568-1583.
-
(2009)
Appl. Numer. Math.
, vol.59
, pp. 1568-1583
-
-
Han, H.D.1
Zhang, Z.W.2
-
64
-
-
77955704782
-
Artificial boundary conditions for high-accuracy aeroacoustic algorithms
-
Dorodnicyn L.W. Artificial boundary conditions for high-accuracy aeroacoustic algorithms. SIAM J. Sci. Comput. 2010, 32:1950-1979.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1950-1979
-
-
Dorodnicyn, L.W.1
-
65
-
-
0032137784
-
Numerical solution of problems on unbounded domains, A review
-
Tsynkov S.V. Numerical solution of problems on unbounded domains, A review. Appl. Numer. Math. 1998, 27:465-532.
-
(1998)
Appl. Numer. Math.
, vol.27
, pp. 465-532
-
-
Tsynkov, S.V.1
-
66
-
-
85115980809
-
The artificial boundary method - Numerical solutions of partial differential equations on unbounded domains
-
Higher Education Press, World Scientific, T. Li, P. Zhang (Eds.)
-
Han H.D. The artificial boundary method - Numerical solutions of partial differential equations on unbounded domains. Fronties and Prospects of Contemporary Applied Mathematics 2005, 33-58. Higher Education Press, World Scientific. T. Li, P. Zhang (Eds.).
-
(2005)
Fronties and Prospects of Contemporary Applied Mathematics
, pp. 33-58
-
-
Han, H.D.1
|