메뉴 건너뛰기




Volumn 231, Issue 7, 2012, Pages 2865-2879

A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions

Author keywords

Convergence; Finite difference scheme; Fractional differential equation; Stability; Unbounded domain

Indexed keywords

BOUNDARY CONDITIONS; INITIAL VALUE PROBLEMS; NUMERICAL METHODS; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 84862821802     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2011.12.028     Document Type: Article
Times cited : (125)

References (68)
  • 4
    • 34249040591 scopus 로고    scopus 로고
    • Fractional diffusion equation with an absorbent term and a linear external force: exact solution
    • Schot A., Lenzi M.K., Evangelista L.R., Malacarne L.C., Mendes R.S., Lenzi E.K. Fractional diffusion equation with an absorbent term and a linear external force: exact solution. Phys. Lett. A 2007, 366:346-350.
    • (2007) Phys. Lett. A , vol.366 , pp. 346-350
    • Schot, A.1    Lenzi, M.K.2    Evangelista, L.R.3    Malacarne, L.C.4    Mendes, R.S.5    Lenzi, E.K.6
  • 5
    • 0035359131 scopus 로고    scopus 로고
    • A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain
    • Agrawal O.P. A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput. Struct. 2001, 79:1479-1501.
    • (2001) Comput. Struct. , vol.79 , pp. 1479-1501
    • Agrawal, O.P.1
  • 6
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 2002, 29:145-155.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 145-155
    • Agrawal, O.P.1
  • 7
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 8
    • 84856483924 scopus 로고    scopus 로고
    • Stability and convergence of Crank-Nicolson method for fractional advection dispersion equation
    • Abu-Saman A.M., Assaf A.M. Stability and convergence of Crank-Nicolson method for fractional advection dispersion equation. Adv. Appl. Math. Anal. 2007, 2:117-125.
    • (2007) Adv. Appl. Math. Anal. , vol.2 , pp. 117-125
    • Abu-Saman, A.M.1    Assaf, A.M.2
  • 9
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.P.3
  • 10
    • 79957886188 scopus 로고    scopus 로고
    • A fast characteristic finite difference method for fractional advection-diffusion equations
    • Wang K.X., Wang H. A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 2011, 34:810-816.
    • (2011) Adv. Water Resour. , vol.34 , pp. 810-816
    • Wang, K.X.1    Wang, H.2
  • 11
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new von-Neumann-type stability analysis for fractional diffusion equations
    • Yuste S.B., Acedo L. An explicit finite difference method and a new von-Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 12
    • 78649924907 scopus 로고    scopus 로고
    • An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form
    • Yuste S.B. An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlinear Dyn. 2011, 6. 10.1115/1.4002687.
    • (2011) J. Comput. Nonlinear Dyn. , vol.6
    • Yuste, S.B.1
  • 13
    • 77952839273 scopus 로고    scopus 로고
    • On three explicit difference schemes for fractional diffusion and diffusion-wave equations
    • Murillo J.Q., Yuste S.B. On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scr. 2009, 10.1088/0031-8949/2009/T136/014025.
    • (2009) Phys. Scr.
    • Murillo, J.Q.1    Yuste, S.B.2
  • 14
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 16
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 17
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional Fokker-Planck equation
    • Chen S., Liu F., Zhuang P., Anh V. Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 2009, 33:256-273.
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2    Zhuang, P.3    Anh, V.4
  • 18
    • 84867978055 scopus 로고    scopus 로고
    • Implicit difference approximation for the time fractional diffusion equation
    • Zhuang P., Liu F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 2006, 22:87-99.
    • (2006) J. Appl. Math. Comput. , vol.22 , pp. 87-99
    • Zhuang, P.1    Liu, F.2
  • 19
    • 46049100549 scopus 로고    scopus 로고
    • A fractional-order implicit difference approximation for the space-time fractional diffusion equation
    • Liu F., Zhuang P., Anh V., Turner I. A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 2006, 47:C48-C68.
    • (2006) ANZIAM J. , vol.47
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4
  • 20
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 21
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • Chen C., Liu F., Turner I., Anh V. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 22
    • 79251616666 scopus 로고    scopus 로고
    • An implicit RBF meshless approach for time fractional diffusion equations
    • Liu Q., Gu Y., Zhang P., Liu F., Nie Y. An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 2011, 48:1-12.
    • (2011) Comput. Mech. , vol.48 , pp. 1-12
    • Liu, Q.1    Gu, Y.2    Zhang, P.3    Liu, F.4    Nie, Y.5
  • 23
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Sun Z.Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.2
  • 24
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T., Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.1    Henry, B.2
  • 25
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 26
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • Du R., Cao W., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.2    Sun, Z.Z.3
  • 27
    • 78649334165 scopus 로고    scopus 로고
    • A compact finite difference scheme for the fractional sub-diffusion equations
    • Gao G.H., Sun Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 28
    • 33646191893 scopus 로고    scopus 로고
    • Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
    • Roop J.P. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 2006, 193:243-268.
    • (2006) J. Comput. Appl. Math. , vol.193 , pp. 243-268
    • Roop, J.P.1
  • 29
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • Deng W. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.1
  • 30
    • 0036650850 scopus 로고    scopus 로고
    • Time fractional diffusion: A discrete random walk approach
    • Gorenflo R., Mainardi F., Moretti D., Paradisi P. Time fractional diffusion: A discrete random walk approach. Nonlinear Dyn. 2002, 29:129-143.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 129-143
    • Gorenflo, R.1    Mainardi, F.2    Moretti, D.3    Paradisi, P.4
  • 31
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 32
    • 77954143774 scopus 로고    scopus 로고
    • Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
    • Li X., Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 2010, 8:1016-1051.
    • (2010) Commun. Comput. Phys. , vol.8 , pp. 1016-1051
    • Li, X.1    Xu, C.2
  • 33
    • 33747333025 scopus 로고    scopus 로고
    • Rectangular decomposition method for fractional diffusion-wave equations
    • Odibat Z. Rectangular decomposition method for fractional diffusion-wave equations. Appl. Math. Comput. 2006, 179:92-97.
    • (2006) Appl. Math. Comput. , vol.179 , pp. 92-97
    • Odibat, Z.1
  • 34
    • 76449102580 scopus 로고    scopus 로고
    • Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation
    • El-Sayed A., Behiry S., Raslan W. Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation. Comput. Math. Appl. 2010, 59:1759-1765.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1759-1765
    • El-Sayed, A.1    Behiry, S.2    Raslan, W.3
  • 35
    • 34247395044 scopus 로고    scopus 로고
    • Homotopy perturbation method for nonlinear partial differential equations of fractional order
    • Momani S., Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365:345-350.
    • (2007) Phys. Lett. A , vol.365 , pp. 345-350
    • Momani, S.1    Odibat, Z.2
  • 36
    • 79251619563 scopus 로고    scopus 로고
    • Analytical approach to Fokker-Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method
    • Yildirim A. Analytical approach to Fokker-Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method. J. King Saud Univ. (Science) 2010, 22:257-264.
    • (2010) J. King Saud Univ. (Science) , vol.22 , pp. 257-264
    • Yildirim, A.1
  • 37
    • 33745712076 scopus 로고    scopus 로고
    • An approximate method for numerical solution of fractional differential equations
    • Kumar P., Agrawal O.P. An approximate method for numerical solution of fractional differential equations. Signal Process. 2006, 86:2602-2610.
    • (2006) Signal Process. , vol.86 , pp. 2602-2610
    • Kumar, P.1    Agrawal, O.P.2
  • 38
    • 73449097072 scopus 로고    scopus 로고
    • Approximate solution of the fractional advection-dispersion equation
    • Jiang W., Lin Y. Approximate solution of the fractional advection-dispersion equation. Comput. Phys. Commun. 2010, 181:557-561.
    • (2010) Comput. Phys. Commun. , vol.181 , pp. 557-561
    • Jiang, W.1    Lin, Y.2
  • 39
    • 70350564868 scopus 로고    scopus 로고
    • The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
    • Odibat Z., Momani S. The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 2009, 58:2199-2208.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 2199-2208
    • Odibat, Z.1    Momani, S.2
  • 40
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Lin X., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225:1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, X.1    Xu, C.2
  • 41
    • 79955669422 scopus 로고    scopus 로고
    • Finite dfiference/specrtal approximations for the fractional cable equation
    • Lin Y., Li X., Xu C. Finite dfiference/specrtal approximations for the fractional cable equation. Math. Comput. 2011, 80:1369-1396.
    • (2011) Math. Comput. , vol.80 , pp. 1369-1396
    • Lin, Y.1    Li, X.2    Xu, C.3
  • 42
    • 84862791676 scopus 로고    scopus 로고
    • Fractional order differential inclusions on the half-line
    • Benchohra M., Hamidi N. Fractional order differential inclusions on the half-line. Surv. Math. Appl. 2010, 5:99-111.
    • (2010) Surv. Math. Appl. , vol.5 , pp. 99-111
    • Benchohra, M.1    Hamidi, N.2
  • 43
  • 44
    • 71649104924 scopus 로고    scopus 로고
    • Fractional order differential equations on an unbounded domain
    • Arara A., Benchohra M., Hamidi N., Nieto J.J. Fractional order differential equations on an unbounded domain. Nonlinear Anal. 2010, 72:580-586.
    • (2010) Nonlinear Anal. , vol.72 , pp. 580-586
    • Arara, A.1    Benchohra, M.2    Hamidi, N.3    Nieto, J.J.4
  • 46
    • 70350663279 scopus 로고    scopus 로고
    • Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions
    • Langlands T., Henry B., Wearne S. Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 2009, 59:761-808.
    • (2009) J. Math. Biol. , vol.59 , pp. 761-808
    • Langlands, T.1    Henry, B.2    Wearne, S.3
  • 47
    • 77952243763 scopus 로고    scopus 로고
    • Finite domain anomalous spreading consistent with first and second laws
    • Valkó P.P., Zhang X.H. Finite domain anomalous spreading consistent with first and second laws. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15:3455-3470.
    • (2010) Commun. Nonlinear Sci. Numer. Simulat. , vol.15 , pp. 3455-3470
    • Valkó, P.P.1    Zhang, X.H.2
  • 48
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusion-wave equation
    • Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
    • (1996) Appl. Math. Lett. , vol.9 , pp. 23-28
    • Mainardi, F.1
  • 49
    • 0000009397 scopus 로고    scopus 로고
    • Analytical properties and applications of the Wright function
    • Gorenflo R., Luchko Y., Mainardi F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2:383-414.
    • (1999) Fract. Calc. Appl. Anal. , vol.2 , pp. 383-414
    • Gorenflo, R.1    Luchko, Y.2    Mainardi, F.3
  • 50
    • 0000637294 scopus 로고
    • Approximation of infinite boundary condition and its application to finite element methods
    • Han H.D., Wu X.N. Approximation of infinite boundary condition and its application to finite element methods. J. Comput. Math. 1985, 3:179-192.
    • (1985) J. Comput. Math. , vol.3 , pp. 179-192
    • Han, H.D.1    Wu, X.N.2
  • 51
    • 0036498981 scopus 로고    scopus 로고
    • A class of artificial boundary conditions for heat equation in unbounded domains
    • Han H.D., Huang Z.Y. A class of artificial boundary conditions for heat equation in unbounded domains. Comput. Math. Appl. 2002, 43:889-900.
    • (2002) Comput. Math. Appl. , vol.43 , pp. 889-900
    • Han, H.D.1    Huang, Z.Y.2
  • 52
    • 2442665695 scopus 로고    scopus 로고
    • Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions
    • Wu X.N., Sun Z.Z. Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Numer. Math. 2004, 50:261-277.
    • (2004) Appl. Numer. Math. , vol.50 , pp. 261-277
    • Wu, X.N.1    Sun, Z.Z.2
  • 53
    • 0036727940 scopus 로고    scopus 로고
    • Exact and approximating boundary conditions for the parabolic problems on unbounded domains
    • Han H.D., Huang Z.Y. Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Comput. Math. Appl. 2002, 44:655-666.
    • (2002) Comput. Math. Appl. , vol.44 , pp. 655-666
    • Han, H.D.1    Huang, Z.Y.2
  • 54
    • 25844459001 scopus 로고    scopus 로고
    • Numerical solutions of parabolic problems on unbounded 3-d spatial domain
    • Han H.D., Yin D.S. Numerical solutions of parabolic problems on unbounded 3-d spatial domain. J. Comput. Math. 2005, 23:449-462.
    • (2005) J. Comput. Math. , vol.23 , pp. 449-462
    • Han, H.D.1    Yin, D.S.2
  • 55
    • 28844493429 scopus 로고    scopus 로고
    • A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain
    • Han H.D., Jin J.C., Wu X.N. A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain. Comput. Math. Appl. 2005, 50:1345-1362.
    • (2005) Comput. Math. Appl. , vol.50 , pp. 1345-1362
    • Han, H.D.1    Jin, J.C.2    Wu, X.N.3
  • 56
    • 33644537715 scopus 로고    scopus 로고
    • The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions
    • Sun Z.Z., Wu X. The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 2006, 214:209-223.
    • (2006) J. Comput. Phys. , vol.214 , pp. 209-223
    • Sun, Z.Z.1    Wu, X.2
  • 57
    • 33750634095 scopus 로고    scopus 로고
    • The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions
    • Sun Z.Z. The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 2006, 219:879-898.
    • (2006) J. Comput. Phys. , vol.219 , pp. 879-898
    • Sun, Z.Z.1
  • 58
    • 33750189006 scopus 로고    scopus 로고
    • Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
    • Antoine X. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. SIAM J. Sci. Comput. 2006, 43:2272-2293.
    • (2006) SIAM J. Sci. Comput. , vol.43 , pp. 2272-2293
    • Antoine, X.1
  • 59
    • 51149087560 scopus 로고    scopus 로고
    • A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations
    • Antoine X., Arnold A., Besse C., Ehrhardt M., Schädle A. A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 2008, 4:729-796.
    • (2008) Commun. Comput. Phys. , vol.4 , pp. 729-796
    • Antoine, X.1    Arnold, A.2    Besse, C.3    Ehrhardt, M.4    Schädle, A.5
  • 60
    • 44149093155 scopus 로고    scopus 로고
    • Artificial boundary conditions for the Stokes and Navier-Stokes equations in domains that are layer-like at infinity
    • Nazarov S.A., Specovius-Neugebauer M. Artificial boundary conditions for the Stokes and Navier-Stokes equations in domains that are layer-like at infinity. Z. Anal. Anwend. 2008, 27:125-155.
    • (2008) Z. Anal. Anwend. , vol.27 , pp. 125-155
    • Nazarov, S.A.1    Specovius-Neugebauer, M.2
  • 61
    • 21844440830 scopus 로고    scopus 로고
    • The numerical solution of parabolic Volterra integro-differential equations on unbounded spatial domains
    • Han H.D., Zhu L., Brunner H., Ma J.T. The numerical solution of parabolic Volterra integro-differential equations on unbounded spatial domains. Appl. Numer. Math. 2005, 55:83-99.
    • (2005) Appl. Numer. Math. , vol.55 , pp. 83-99
    • Han, H.D.1    Zhu, L.2    Brunner, H.3    Ma, J.T.4
  • 62
    • 33747329897 scopus 로고    scopus 로고
    • Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains
    • Han H.D., Zhu L., Brunner H., Ma J.T. Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains. J. Comput. Appl. Math. 2006, 197:406-420.
    • (2006) J. Comput. Appl. Math. , vol.197 , pp. 406-420
    • Han, H.D.1    Zhu, L.2    Brunner, H.3    Ma, J.T.4
  • 63
    • 63549087831 scopus 로고    scopus 로고
    • An analysis of the finite-difference method for one-dimensional Klein-Gordon equation on unbounded domain
    • Han H.D., Zhang Z.W. An analysis of the finite-difference method for one-dimensional Klein-Gordon equation on unbounded domain. Appl. Numer. Math. 2009, 59:1568-1583.
    • (2009) Appl. Numer. Math. , vol.59 , pp. 1568-1583
    • Han, H.D.1    Zhang, Z.W.2
  • 64
    • 77955704782 scopus 로고    scopus 로고
    • Artificial boundary conditions for high-accuracy aeroacoustic algorithms
    • Dorodnicyn L.W. Artificial boundary conditions for high-accuracy aeroacoustic algorithms. SIAM J. Sci. Comput. 2010, 32:1950-1979.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1950-1979
    • Dorodnicyn, L.W.1
  • 65
    • 0032137784 scopus 로고    scopus 로고
    • Numerical solution of problems on unbounded domains, A review
    • Tsynkov S.V. Numerical solution of problems on unbounded domains, A review. Appl. Numer. Math. 1998, 27:465-532.
    • (1998) Appl. Numer. Math. , vol.27 , pp. 465-532
    • Tsynkov, S.V.1
  • 66
    • 85115980809 scopus 로고    scopus 로고
    • The artificial boundary method - Numerical solutions of partial differential equations on unbounded domains
    • Higher Education Press, World Scientific, T. Li, P. Zhang (Eds.)
    • Han H.D. The artificial boundary method - Numerical solutions of partial differential equations on unbounded domains. Fronties and Prospects of Contemporary Applied Mathematics 2005, 33-58. Higher Education Press, World Scientific. T. Li, P. Zhang (Eds.).
    • (2005) Fronties and Prospects of Contemporary Applied Mathematics , pp. 33-58
    • Han, H.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.