메뉴 건너뛰기




Volumn 18, Issue 2, 2011, Pages 235-244

Boundary value problems for differential equations involving riemann-liouville fractional derivative on the half-line

Author keywords

Boundary value problem; Diagonalization process; Di erential equation; Existence; Fixed point; Fractional integral; Infinite intervals; Riemann Liouville fractional derivative

Indexed keywords


EID: 79551587558     PISSN: 12013390     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (51)

References (24)
  • 1
    • 42649131330 scopus 로고    scopus 로고
    • Boundary value problems for fractional di®erential equations
    • R.P Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional di®erential equations, Adv. Stud. Contemp. Math., 12 (2) (2008), 181-196.
    • (2008) Adv. Stud. Contemp. Math. , vol.12 , Issue.2 , pp. 181-196
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 2
    • 0036538450 scopus 로고    scopus 로고
    • Time scale boundary value problems on infinite intervals
    • R.P Agarwal, M. Bohner and D. O'Regan, Time scale boundary value problems on infinite intervals, J. Comp. Appl. Math 141 (2002), 27-34.
    • (2002) J. Comp. Appl. Math , vol.141 , pp. 27-34
    • Agarwal, R.P.1    Bohner, M.2    O'Regan, D.3
  • 4
    • 0033411765 scopus 로고    scopus 로고
    • Boundary value problems of nonsingular type on the semi-infinite interval
    • R.P Agarwal and D. O'Regan, Boundary value problems of nonsingular type on the semi-infinite interval, Tohoku. Math. J. 51 (1999), 391-397.
    • (1999) Tohoku. Math. J. , vol.51 , pp. 391-397
    • Agarwal, R.P.1    O'Regan, D.2
  • 5
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear frac- tional di®erential equation
    • Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear frac- tional di®erential equation, J. Math. Anal. Appl. 311 (2005), 495-505.
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.1    Lu, H.2
  • 6
    • 37349041073 scopus 로고    scopus 로고
    • Perturbed functional dif-ferential equations with fractional order
    • A. Belarbi, M. Benchohra, S. Hamani and S.K. Ntouyas, Perturbed functional dif- ferential equations with fractional order, Commun. Appl. Anal. 11 (3-4) (2007), 429-440.
    • (2007) Commun. Appl. Anal. , vol.11 , Issue.3-4 , pp. 429-440
    • Belarbi, A.1    Benchohra, M.2    Hamani, S.3    Ntouyas, S.K.4
  • 7
    • 38149134242 scopus 로고    scopus 로고
    • Uniqueness results for fractional functional di®erential equations with infinite delay in Frechet spaces
    • A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional di®erential equations with infinite delay in Frechet spaces, Appl. Anal. 85 (2006), 1459-1470.
    • (2006) Appl. Anal. , vol.85 , pp. 1459-1470
    • Belarbi, A.1    Benchohra, M.2    Ouahab, A.3
  • 8
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional di®erential equations with infinite delay
    • M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional di®erential equations with infinite delay, J. Math. Anal. Appl. 338 (2) (2008), 1340-1350.
    • (2008) J. Math. Anal. Appl. , vol.338 , Issue.2 , pp. 1340-1350
    • Benchohra, M.1    Henderson, J.2    Ntouyas, S.K.3    Ouahab, A.4
  • 9
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a nonlinear fractional di®erential equation
    • D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional di®erential equation, J. Math. Anal. Appl. 204 (1996), 609-625.
    • (1996) J. Math. Anal. Appl. , vol.204 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 10
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional order di®er-ential equations used in the modeling of viscoplasticity in
    • F. Keil, W. Mackens, H. Voss, and J. Werther, Eds Springer- Verlag, Heidelberg
    • K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order di®er- ential equations used in the modeling of viscoplasticity, in "Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999.
    • (1999) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 12
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.
    • (1995) Biophys. J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 14
    • 33745869026 scopus 로고    scopus 로고
    • Physical interpretation of initial conditions for frac-tional di®erential equations with Riemann-Liouville fractional derivatives
    • N. Heymans and I. Podlubny, Physical interpretation of initial conditions for frac- tional di®erential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (5) (2006), 765-772.
    • (2006) Rheologica Acta , vol.45 , Issue.5 , pp. 765-772
    • Heymans, N.1    Podlubny, I.2
  • 16
    • 17444382726 scopus 로고    scopus 로고
    • Nonlinear di®erential equations with the Caputo fractional derivative in the space of continuously di®erentiable functions
    • A. A. Kilbas and S.A. Marzan, Nonlinear di®erential equations with the Caputo fractional derivative in the space of continuously di®erentiable functions, Di®erential Equations 41 (2005), 84-89.
    • (2005) Di®erential Equations , vol.41 , pp. 84-89
    • Kilbas, A.A.1    Marzan, S.A.2
  • 19
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statisti- cal mechanics in
    • A. Carpinteri and F. Mainardi, Eds Springer- Verlag, Wien
    • F. Mainardi, Fractional calculus: Some basic problems in continuum and statisti- cal mechanics, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 20
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H.G. Kilian and T.F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 22
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and frac- tional di®erentiation
    • I. Podlubny, Geometric and physical interpretation of fractional integration and frac- tional di®erentiation, Fract. Calc. Appl. Anal. 5 (2002), 367-386.
    • (2002) Fract. Calc. Appl. Anal. , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 24
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of nonlinear fractional dif- ferential equations
    • S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional dif- ferential equations, Electron. J. Di®erential Equations 2006, No. 36, pp. 1-12.
    • (2006) Electron. J. Di®erential Equations , Issue.36 , pp. 1-12
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.