-
1
-
-
42649131330
-
Boundary value problems for fractional di®erential equations
-
R.P Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional di®erential equations, Adv. Stud. Contemp. Math., 12 (2) (2008), 181-196.
-
(2008)
Adv. Stud. Contemp. Math.
, vol.12
, Issue.2
, pp. 181-196
-
-
Agarwal, R.P.1
Benchohra, M.2
Hamani, S.3
-
2
-
-
0036538450
-
Time scale boundary value problems on infinite intervals
-
R.P Agarwal, M. Bohner and D. O'Regan, Time scale boundary value problems on infinite intervals, J. Comp. Appl. Math 141 (2002), 27-34.
-
(2002)
J. Comp. Appl. Math
, vol.141
, pp. 27-34
-
-
Agarwal, R.P.1
Bohner, M.2
O'Regan, D.3
-
4
-
-
0033411765
-
Boundary value problems of nonsingular type on the semi-infinite interval
-
R.P Agarwal and D. O'Regan, Boundary value problems of nonsingular type on the semi-infinite interval, Tohoku. Math. J. 51 (1999), 391-397.
-
(1999)
Tohoku. Math. J.
, vol.51
, pp. 391-397
-
-
Agarwal, R.P.1
O'Regan, D.2
-
5
-
-
25144460994
-
Positive solutions for boundary value problem of nonlinear frac- tional di®erential equation
-
Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear frac- tional di®erential equation, J. Math. Anal. Appl. 311 (2005), 495-505.
-
(2005)
J. Math. Anal. Appl.
, vol.311
, pp. 495-505
-
-
Bai, Z.1
Lu, H.2
-
6
-
-
37349041073
-
Perturbed functional dif-ferential equations with fractional order
-
A. Belarbi, M. Benchohra, S. Hamani and S.K. Ntouyas, Perturbed functional dif- ferential equations with fractional order, Commun. Appl. Anal. 11 (3-4) (2007), 429-440.
-
(2007)
Commun. Appl. Anal.
, vol.11
, Issue.3-4
, pp. 429-440
-
-
Belarbi, A.1
Benchohra, M.2
Hamani, S.3
Ntouyas, S.K.4
-
7
-
-
38149134242
-
Uniqueness results for fractional functional di®erential equations with infinite delay in Frechet spaces
-
A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional di®erential equations with infinite delay in Frechet spaces, Appl. Anal. 85 (2006), 1459-1470.
-
(2006)
Appl. Anal.
, vol.85
, pp. 1459-1470
-
-
Belarbi, A.1
Benchohra, M.2
Ouahab, A.3
-
8
-
-
34848916710
-
Existence results for fractional order functional di®erential equations with infinite delay
-
M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional di®erential equations with infinite delay, J. Math. Anal. Appl. 338 (2) (2008), 1340-1350.
-
(2008)
J. Math. Anal. Appl.
, vol.338
, Issue.2
, pp. 1340-1350
-
-
Benchohra, M.1
Henderson, J.2
Ntouyas, S.K.3
Ouahab, A.4
-
9
-
-
0030528474
-
Existence and uniqueness for a nonlinear fractional di®erential equation
-
D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional di®erential equation, J. Math. Anal. Appl. 204 (1996), 609-625.
-
(1996)
J. Math. Anal. Appl.
, vol.204
, pp. 609-625
-
-
Delbosco, D.1
Rodino, L.2
-
10
-
-
0002795136
-
On the solution of nonlinear fractional order di®er-ential equations used in the modeling of viscoplasticity in
-
F. Keil, W. Mackens, H. Voss, and J. Werther, Eds Springer- Verlag, Heidelberg
-
K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order di®er- ential equations used in the modeling of viscoplasticity, in "Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999.
-
(1999)
Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties
, pp. 217-224
-
-
Diethelm, K.1
Freed, A.D.2
-
12
-
-
0028878140
-
A fractional calculus approach of self-similar protein dynamics
-
W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.
-
(1995)
Biophys. J.
, vol.68
, pp. 46-53
-
-
Glockle, W.G.1
Nonnenmacher, T.F.2
-
14
-
-
33745869026
-
Physical interpretation of initial conditions for frac-tional di®erential equations with Riemann-Liouville fractional derivatives
-
N. Heymans and I. Podlubny, Physical interpretation of initial conditions for frac- tional di®erential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (5) (2006), 765-772.
-
(2006)
Rheologica Acta
, vol.45
, Issue.5
, pp. 765-772
-
-
Heymans, N.1
Podlubny, I.2
-
16
-
-
17444382726
-
Nonlinear di®erential equations with the Caputo fractional derivative in the space of continuously di®erentiable functions
-
A. A. Kilbas and S.A. Marzan, Nonlinear di®erential equations with the Caputo fractional derivative in the space of continuously di®erentiable functions, Di®erential Equations 41 (2005), 84-89.
-
(2005)
Di®erential Equations
, vol.41
, pp. 84-89
-
-
Kilbas, A.A.1
Marzan, S.A.2
-
17
-
-
77956684069
-
-
North-Holland Mathematics Studies 204. Elsevier Sci- ence B.V., Amsterdam
-
A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Frac- tional Di®erential Equations. North-Holland Mathematics Studies, 204. Elsevier Sci- ence B.V., Amsterdam, 2006.
-
(2006)
Theory and Applications of Frac- tional Di®erential Equations
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
19
-
-
0001983732
-
Fractional calculus: Some basic problems in continuum and statisti- cal mechanics in
-
A. Carpinteri and F. Mainardi, Eds Springer- Verlag, Wien
-
F. Mainardi, Fractional calculus: Some basic problems in continuum and statisti- cal mechanics, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
20
-
-
0001044887
-
Relaxation in filled polymers: A fractional calculus approach
-
F. Metzler, W. Schick, H.G. Kilian and T.F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 7180-7186
-
-
Metzler, F.1
Schick, W.2
Kilian, H.G.3
Nonnenmacher, T.F.4
-
22
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and frac- tional di®erentiation
-
I. Podlubny, Geometric and physical interpretation of fractional integration and frac- tional di®erentiation, Fract. Calc. Appl. Anal. 5 (2002), 367-386.
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, pp. 367-386
-
-
Podlubny, I.1
-
24
-
-
33645152919
-
Positive solutions for boundary-value problems of nonlinear fractional dif- ferential equations
-
S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional dif- ferential equations, Electron. J. Di®erential Equations 2006, No. 36, pp. 1-12.
-
(2006)
Electron. J. Di®erential Equations
, Issue.36
, pp. 1-12
-
-
Zhang, S.1
|