메뉴 건너뛰기




Volumn 85, Issue , 2012, Pages 29-37

Feature selection based on sensitivity analysis of fuzzy ISODATA

Author keywords

Classification; Clustering; Feature selection; Fuzzy ISODATA; Microarray; Sensitivity analysis

Indexed keywords

CLUSTERING; DATA ALGORITHM; FEATURE SELECTION METHODS; FEATURE SENSITIVITY; FEATURE SUBSET; GENE EXPRESSION DATA; HIGH-DIMENSIONAL; ISODATA; MICROARRAY DATA SETS; RECURSIVE FEATURE ELIMINATION; SELF ORGANIZING; UNSUPERVISED METHOD;

EID: 84862804273     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.01.005     Document Type: Article
Times cited : (31)

References (44)
  • 1
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • Akay M.F. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 2009, 36(2):3240-3247.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3240-3247
    • Akay, M.F.1
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. U.S.A. 1999, 96:6745-6750.
    • (1999) Proc. Nat. Acad. Sci. U.S.A. , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 4
    • 0016951409 scopus 로고
    • A physical interpretation of fuzzy ISODATA
    • Bezdek J.C. A physical interpretation of fuzzy ISODATA. IEEE SMC 1976, SMC-6:387-390.
    • (1976) IEEE SMC , vol.SMC 6 , pp. 387-390
    • Bezdek, J.C.1
  • 6
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifi{ligature}ers
    • ACN Press, D. Haussler (Ed.)
    • Boser B., Guyon I., Vapnik V. A training algorithm for optimal margin classifi{ligature}ers. Proc. COLT 1992, 144-152. ACN Press. D. Haussler (Ed.).
    • (1992) Proc. COLT , pp. 144-152
    • Boser, B.1    Guyon, I.2    Vapnik, V.3
  • 8
    • 58149465401 scopus 로고    scopus 로고
    • An efficient gene selection algorithm based on mutual information
    • Cai R.C., Hao Z.F., Yang X.W., Wen W. An efficient gene selection algorithm based on mutual information. Neurocomputing 2009, 72:991-999.
    • (2009) Neurocomputing , vol.72 , pp. 991-999
    • Cai, R.C.1    Hao, Z.F.2    Yang, X.W.3    Wen, W.4
  • 9
    • 62349084208 scopus 로고    scopus 로고
    • A simultaneous learning framework for clustering and classification
    • Cai W.L., Chen S.C., Zhang D.Q. A simultaneous learning framework for clustering and classification. Pattern Recognit. 2009, 42(7):1248-1259.
    • (2009) Pattern Recognit. , vol.42 , Issue.7 , pp. 1248-1259
    • Cai, W.L.1    Chen, S.C.2    Zhang, D.Q.3
  • 10
    • 44949091421 scopus 로고    scopus 로고
    • Feature selection to diagnose a business crisis by using a real GA-based support vector machine: an empirical study
    • Chen L.H., Hsiao H.D. Feature selection to diagnose a business crisis by using a real GA-based support vector machine: an empirical study. Expert Syst. Appl. 2008, 35(3):1145-1155.
    • (2008) Expert Syst. Appl. , vol.35 , Issue.3 , pp. 1145-1155
    • Chen, L.H.1    Hsiao, H.D.2
  • 11
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid for feature selection, machine learning
    • Das S. Filters, wrappers and a boosting-based hybrid for feature selection, machine learning. Proc. 18th Int. Conf. 2001, 74-81.
    • (2001) Proc. 18th Int. Conf. , pp. 74-81
    • Das, S.1
  • 14
    • 77649237600 scopus 로고    scopus 로고
    • Median fuzzy C-means for cluster dissimilarity data
    • Geweniger T., Zülke D., Hammer B., Villmann T. Median fuzzy C-means for cluster dissimilarity data. Neurocomputing 2010, 73(7-9):1109-1116.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1109-1116
    • Geweniger, T.1    Zülke, D.2    Hammer, B.3    Villmann, T.4
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 16
    • 48049093694 scopus 로고    scopus 로고
    • Subspace based feature selection for pattern recognition
    • Gunala S., Edizkan R. Subspace based feature selection for pattern recognition. Inf. Sci. 2008, 178(19):3716-3726.
    • (2008) Inf. Sci. , vol.178 , Issue.19 , pp. 3716-3726
    • Gunala, S.1    Edizkan, R.2
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., et al. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1-3):389-422.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 18
    • 84892140515 scopus 로고    scopus 로고
    • Using aggregation to improve the performance of mixture Gaussian acoustic models
    • T. Hazen, A. Halberstadt, Using aggregation to improve the performance of mixture Gaussian acoustic models, In: Proc. ICASSP, Seattle, WA, May, (1998) 653-656.
    • (1998) Proc. ICASSP, Seattle, WA, May , pp. 653-656
    • Hazen, T.1    Halberstadt, A.2
  • 19
    • 44649105615 scopus 로고    scopus 로고
    • Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm
    • Hong Y., Kwong S., Chang Yuchou, Ren Qingsheng Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm. Pattern Recognit. 2008, 41(9):2742-2756.
    • (2008) Pattern Recognit. , vol.41 , Issue.9 , pp. 2742-2756
    • Hong, Y.1    Kwong, S.2    Chang, Y.3    Ren, Q.4
  • 20
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • Hua J.P., Tembe W.D., Dougherty E.R. Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognit. 2009, 42:409-424.
    • (2009) Pattern Recognit. , vol.42 , pp. 409-424
    • Hua, J.P.1    Tembe, W.D.2    Dougherty, E.R.3
  • 22
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • Jeffery I.B., Higgins D.G., Culhane A.C. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinf. 2006, 7(1):359. 10.1186/1471-2105-7-359.
    • (2006) BMC Bioinf. , vol.7 , Issue.1 , pp. 359
    • Jeffery, I.B.1    Higgins, D.G.2    Culhane, A.C.3
  • 24
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 26
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognit. 2000, 33(1):25-41.
    • (2000) Pattern Recognit. , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 28
    • 4644347255 scopus 로고    scopus 로고
    • LeiYu, a selective sampling approach to active feature selection
    • Liu H., Motoda H. LeiYu, a selective sampling approach to active feature selection. Artifi{ligature}cial Intell. 2004, 159:49-74.
    • (2004) Artifi{ligature}cial Intell. , vol.159 , pp. 49-74
    • Liu, H.1    Motoda, H.2
  • 29
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu H., Li J., Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform. 2002, 13:51-60.
    • (2002) Genome Inform. , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 30
    • 57149092634 scopus 로고    scopus 로고
    • Informative gene selection for cancer subtype classification with BP neural networks
    • Liu Q.J., Li Y.X., Ruan X.G. Informative gene selection for cancer subtype classification with BP neural networks. Chin. J. Biomed. Eng. 2008, 27(5):710-715.
    • (2008) Chin. J. Biomed. Eng. , vol.27 , Issue.5 , pp. 710-715
    • Liu, Q.J.1    Li, Y.X.2    Ruan, X.G.3
  • 31
    • 0037403098 scopus 로고    scopus 로고
    • Feature selection based on a modifi{ligature}ed fuzzy C-means algorithm with supervision
    • Marcelloni F. Feature selection based on a modifi{ligature}ed fuzzy C-means algorithm with supervision. Inf. Sci. 2003, 151:201-226.
    • (2003) Inf. Sci. , vol.151 , pp. 201-226
    • Marcelloni, F.1
  • 33
    • 21244466861 scopus 로고    scopus 로고
    • Efficient parallel hierarchical clustering algorithms
    • Rajasekaran S. Efficient parallel hierarchical clustering algorithms. IEEE Trans. Parallel Distrib. Syst. 2005, 16(6):497-502.
    • (2005) IEEE Trans. Parallel Distrib. Syst. , vol.16 , Issue.6 , pp. 497-502
    • Rajasekaran, S.1
  • 34
    • 0032741727 scopus 로고    scopus 로고
    • An ISODATA clustering procedure for symbolic objects using a distributed genetic algorithm
    • Ravi T.V., Gowda K.Chidananda An ISODATA clustering procedure for symbolic objects using a distributed genetic algorithm. Pattern Recognit. Lett. 1999, 20:659-666.
    • (1999) Pattern Recognit. Lett. , vol.20 , pp. 659-666
    • Ravi, T.V.1    Gowda, K.2
  • 35
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp M.A., Ross K.N., Tamayo P., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 2002, 8(1):68-74.
    • (2002) Nat. Med. , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3
  • 36
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D., Febbo P.G., Ross K., et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1(2):203-209.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3
  • 37
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21:631-643.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 39
    • 33751002948 scopus 로고    scopus 로고
    • A novel feature selection approach: combining feature wrappers and filters
    • Uncu Ö., Türkşenb I.B. A novel feature selection approach: combining feature wrappers and filters. Inf. Sci. 2007, 177:449-466.
    • (2007) Inf. Sci. , vol.177 , pp. 449-466
    • Uncu, O.1    Türkşenb, I.B.2
  • 41
    • 34250676530 scopus 로고    scopus 로고
    • Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data
    • Yousef M., Jung S., Showe L.C., Showe M.K. Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data. BMC Bioinf. 2007, 8(1):144.
    • (2007) BMC Bioinf. , vol.8 , Issue.1 , pp. 144
    • Yousef, M.1    Jung, S.2    Showe, L.C.3    Showe, M.K.4
  • 42
    • 0036493522 scopus 로고    scopus 로고
    • Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells
    • Zhan F., Hardin J., Kordsmeier B., et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002, 99:1745-1757.
    • (2002) Blood , vol.99 , pp. 1745-1757
    • Zhan, F.1    Hardin, J.2    Kordsmeier, B.3
  • 43
    • 0035810997 scopus 로고    scopus 로고
    • Recursive partitioning for tumor classification with gene expression microarray data
    • Zhang H.P., Singer Chang-Yung Yu, B., et al. Recursive partitioning for tumor classification with gene expression microarray data. Proc. Nat. Acad. Sci. U.S.A 2001, 98(12):6730-6735.
    • (2001) Proc. Nat. Acad. Sci. U.S.A , vol.98 , Issue.12 , pp. 6730-6735
    • Zhang, H.P.1    Singer, C.Y.Y.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.