메뉴 건너뛰기




Volumn 20, Issue 7, 1999, Pages 659-666

An ISODATA clustering procedure for symbolic objects using a distributed genetic algorithm

Author keywords

Distributed genetic algorithms; Genetic algorithms; ISODATA; Symbolic clustering; Symbolic similarity

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; DATA STRUCTURES; GENETIC ALGORITHMS; ITERATIVE METHODS; NORMAL DISTRIBUTION; PERTURBATION TECHNIQUES;

EID: 0032741727     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(99)00027-6     Document Type: Article
Times cited : (24)

References (34)
  • 1
    • 0028423714 scopus 로고
    • Unsupervised image segmentation using a distributed genetic algorithm
    • Andrey, P., Tarroux, P., 1994. Unsupervised image segmentation using a distributed genetic algorithm. Pattern Recognition 22 (55), 659-673.
    • (1994) Pattern Recognition , vol.22 , Issue.55 , pp. 659-673
    • Andrey, P.1    Tarroux, P.2
  • 4
    • 0039233909 scopus 로고
    • On some clustering techniques
    • Bonner, R.E., 1969. On some clustering techniques. IBM Journal 8, 22-32.
    • (1969) IBM Journal , vol.8 , pp. 22-32
    • Bonner, R.E.1
  • 8
    • 84921167687 scopus 로고
    • From numerical to symbolic clustering
    • Yugoslavia, 9-15 September 1990
    • Diday, E., 1990. From numerical to symbolic clustering. In: COMPSTAT- Dubrovnik, Yugoslavia, 9-15 September 1990.
    • (1990) In: COMPSTAT- Dubrovnik
    • Diday, E.1
  • 14
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher, D.H., 1987. Knowledge acquisition via incremental conceptual clustering. Machine Learning 2, 139-172.
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 17
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • Gowda, K.C. Diday, E., 1991a. Symbolic clustering using a new dissimilarity measure. Pattern Recognition 24 (6), 567-578.
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 18
    • 0344824306 scopus 로고
    • Unsupervised learning through symbolic clustering
    • Gowda, K.C. Diday, E., 1991b. Unsupervised learning through symbolic clustering. Pattern Recognition Letters 12, 259-264.
    • (1991) Pattern Recognition Letters , vol.12 , pp. 259-264
    • Gowda, K.C.1    Diday, E.2
  • 20
    • 0029359322 scopus 로고
    • Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda, K.C., Ravi, T.V., 1995a. Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition 28 (8), 1277-1282.
    • (1995) Pattern Recognition , vol.28 , Issue.8 , pp. 1277-1282
    • Gowda, K.C.1    Ravi, T.V.2
  • 21
    • 0029326165 scopus 로고
    • Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda, K.C. Ravi, T.V., 1995b. Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition Letters 16, 647-652.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 647-652
    • Gowda, K.C.1    Ravi, T.V.2
  • 23
    • 0024765031 scopus 로고
    • Recognising and locating partially occluded 2-D objects: Symbolic clustering method
    • Hwang, V.S.S., 1989. Recognising and locating partially occluded 2-D objects: symbolic clustering method. IEEE Transactions on Systems, Man and Cybernetics 19, 1644-1656.
    • (1989) IEEE Transactions on Systems, Man and Cybernetics , vol.19 , pp. 1644-1656
    • Hwang, V.S.S.1
  • 24
    • 0004974591 scopus 로고
    • Classification of qualitative data
    • Hyvarinen, L., 1963. Classification of qualitative data. BIT 2, 83-88.
    • (1963) BIT , vol.2 , pp. 83-88
    • Hyvarinen, L.1
  • 27
    • 84970541720 scopus 로고
    • Multidimensional group analysis
    • Jancey, R.C., 1966. Multidimensional group analysis. Aust. J. Bot 14, 127-138.
    • (1966) Aust. J. Bot , vol.14 , pp. 127-138
    • Jancey, R.C.1
  • 29
    • 0003126321 scopus 로고
    • A general theory of classificatory strategies in clustering systems
    • Lance, G.N., Williams, W.T., 1967. A general theory of classificatory strategies in clustering systems. Comp. J 10 (3), 271-276.
    • (1967) Comp. J , vol.10 , Issue.3 , pp. 271-276
    • Lance, G.N.1    Williams, W.T.2
  • 30
    • 0000166613 scopus 로고
    • Experiments with incremental concept formation
    • Lebovitz, M., 1987. Experiments with incremental concept formation. Machine Learning 2, 103-138.
    • (1987) Machine Learning , vol.2 , pp. 103-138
    • Lebovitz, M.1
  • 31
    • 0344392618 scopus 로고
    • Some methods for classification of multivariate observations
    • Western Management Science Institute
    • Macqueen, J.B., 1967. Some methods for classification of multivariate observations. Western Management Science Institute, Univ. of California, Working Paper 96.
    • (1967) Univ. of California, Working Paper 96
    • MacQueen, J.B.1
  • 33
    • 0002096383 scopus 로고
    • A recent advance in data analysis: clustering objects into classes characterised by conjuctive concepts
    • In: Kanal, L., Rosenfeld, A. (Eds.)
    • Michalski, R., Stepp, R.E., Diday, E., 1981. A recent advance in data analysis: clustering objects into classes characterised by conjuctive concepts. In: Kanal, L., Rosenfeld, A. (Eds.), Progress in Pattern Recognition, Vol. 1.
    • (1981) Progress in Pattern Recognition , vol.1
    • Michalski, R.1    Stepp, R.E.2    Diday, E.3
  • 34
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolf, J.H., 1970. Pattern clustering by multivariate mixture analysis. Multivariate Behavioural Research 5, 329-350.
    • (1970) Multivariate Behavioural Research , vol.5 , pp. 329-350
    • Wolf, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.