메뉴 건너뛰기




Volumn 41, Issue 9, 2008, Pages 2742-2756

Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm

Author keywords

Clustering ensembles; Dimensionality unbiased; Population based incremental learning algorithm; Unsupervised feature selection

Indexed keywords

CLUSTERING ALGORITHMS; DATABASE SYSTEMS; FEATURE EXTRACTION; SET THEORY;

EID: 44649105615     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.03.007     Document Type: Article
Times cited : (141)

References (34)
  • 3
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A., and Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. 97 (1997) 245-271
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 4
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifier
    • Kudo M., and Sklanshy J. Comparison of algorithms that select features for pattern classifier. Pattern Recognition 33 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklanshy, J.2
  • 6
    • 0035294798 scopus 로고    scopus 로고
    • Feature selection using tabu search method
    • Zhang H., and Sun G. Feature selection using tabu search method. Pattern Recognition 35 (2002) 701-711
    • (2002) Pattern Recognition , vol.35 , pp. 701-711
    • Zhang, H.1    Sun, G.2
  • 7
    • 44649113306 scopus 로고    scopus 로고
    • S. Baluja, S. Davis, Removing the genetics from the standard genetic algorithm, in: Proceedings of the International Conference on Machine Learning, 1995, pp. 38-46.
    • S. Baluja, S. Davis, Removing the genetics from the standard genetic algorithm, in: Proceedings of the International Conference on Machine Learning, 1995, pp. 38-46.
  • 8
    • 0041965980 scopus 로고    scopus 로고
    • Clustering ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Clustering ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3 (2002) 583-617
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 9
    • 27144484035 scopus 로고    scopus 로고
    • Experimental study on population-based incremental learning algorithms for dynamic optimization problems
    • Yang S., and Yao X. Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9 (2005) 815-834
    • (2005) Soft Comput. , vol.9 , pp. 815-834
    • Yang, S.1    Yao, X.2
  • 10
    • 1942451938 scopus 로고    scopus 로고
    • L. Yu, H. Liu, Feature selection for high-dimensional data: A fast correlation-based filter approach, in: Proceedings of the International Conference on Machine Learning, 2003.
    • L. Yu, H. Liu, Feature selection for high-dimensional data: A fast correlation-based filter approach, in: Proceedings of the International Conference on Machine Learning, 2003.
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 12
    • 78149289039 scopus 로고    scopus 로고
    • M. Dash, K. Choi, P. Scheuermann, H. Liu, Feature selection for clustering-A filter solution, in: Proceedings of the IEEE International Conference on Data Mining, 2002, pp. 115-122.
    • M. Dash, K. Choi, P. Scheuermann, H. Liu, Feature selection for clustering-A filter solution, in: Proceedings of the IEEE International Conference on Data Mining, 2002, pp. 115-122.
  • 14
    • 38749139222 scopus 로고    scopus 로고
    • Consensus unsupervised feature ranking from multiple views
    • Hong Y., Kwong S., Chang Y., and Ren Q. Consensus unsupervised feature ranking from multiple views. Pattern Recognition Lett. 29 (2008) 595-602
    • (2008) Pattern Recognition Lett. , vol.29 , pp. 595-602
    • Hong, Y.1    Kwong, S.2    Chang, Y.3    Ren, Q.4
  • 15
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy J.G., and Brodley C.E. Feature selection for unsupervised learning. J. Mach. Learn. Res. 5 (2004) 845-889
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 16
    • 0034593107 scopus 로고    scopus 로고
    • Y. Kim, W. Street, F. Menczer, Feature selection for unsupervised learning via evolutionary search, in: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2000, pp. 365-369.
    • Y. Kim, W. Street, F. Menczer, Feature selection for unsupervised learning via evolutionary search, in: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2000, pp. 365-369.
  • 17
    • 84945942894 scopus 로고    scopus 로고
    • M. Morita, R. Sabourin, F. Bortolozzi, C.Y. Suen, Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition, in: Proceedings of the International Conference on Document Analysis and Recognition, 2003.
    • M. Morita, R. Sabourin, F. Bortolozzi, C.Y. Suen, Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition, in: Proceedings of the International Conference on Document Analysis and Recognition, 2003.
  • 19
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • Fred A., and Jain A.K. Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 835-850
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 835-850
    • Fred, A.1    Jain, A.K.2
  • 20
    • 1942517297 scopus 로고    scopus 로고
    • X.Z. Fern, C.E. Brodley, Clustering ensembles for high dimensional data clustering, in: Proceedings of the International Conference on Machine Learning, 2003, pp. 186-193.
    • X.Z. Fern, C.E. Brodley, Clustering ensembles for high dimensional data clustering, in: Proceedings of the International Conference on Machine Learning, 2003, pp. 186-193.
  • 21
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression moscovery data
    • Monti S., Tamaya P., Mesirov J., and Golub T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression moscovery data. J. Mach. Learn. 52 (2003) 91-118
    • (2003) J. Mach. Learn. , vol.52 , pp. 91-118
    • Monti, S.1    Tamaya, P.2    Mesirov, J.3    Golub, T.4
  • 23
    • 41149092237 scopus 로고    scopus 로고
    • Y.C. Chang, D.J. Lee, Y. Hong, J.K. Archibald, Unsupervised video shot detection using clustering ensemble with a color global scale-invariant feature transform descriptor, EURASIP Journal on Image and Video Processing 2008, Article ID 860743, 10 pages, February 2008.
    • Y.C. Chang, D.J. Lee, Y. Hong, J.K. Archibald, Unsupervised video shot detection using clustering ensemble with a color global scale-invariant feature transform descriptor, EURASIP Journal on Image and Video Processing 2008, Article ID 860743, 10 pages, February 2008.
  • 25
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian network based optimization
    • Inza I., Larrañaga P., Etxberria R., and Sierra B. Feature subset selection by Bayesian network based optimization. Artif. Intell. (2000) 157-184
    • (2000) Artif. Intell. , pp. 157-184
    • Inza, I.1    Larrañaga, P.2    Etxberria, R.3    Sierra, B.4
  • 26
    • 0036778916 scopus 로고    scopus 로고
    • A simple method for generating additive clustering models with limited complexity
    • Michael L. A simple method for generating additive clustering models with limited complexity. J. Mach. Learn. 49 (2002) 39-58
    • (2002) J. Mach. Learn. , vol.49 , pp. 39-58
    • Michael, L.1
  • 27
    • 34248370390 scopus 로고    scopus 로고
    • Feature subset selection in unsupervised learning via multiobjective optimization
    • Handl J., and Knowles J. Feature subset selection in unsupervised learning via multiobjective optimization. Int. J. Comput. Intell. Res. 2 (2006) 217-238
    • (2006) Int. J. Comput. Intell. Res. , vol.2 , pp. 217-238
    • Handl, J.1    Knowles, J.2
  • 28
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 8 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 29
    • 44649191391 scopus 로고    scopus 로고
    • M. Skurichina, R.P.W. Duin, Bagging and the random subspace method for redundant feature spaces, in: Proceedings of the International Workshop Multiple Classifier Systems, 2001.
    • M. Skurichina, R.P.W. Duin, Bagging and the random subspace method for redundant feature spaces, in: Proceedings of the International Workshop Multiple Classifier Systems, 2001.
  • 31
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66 (1971) 846-850
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 32
    • 0031215849 scopus 로고    scopus 로고
    • The equation for response to selection and its use for prediction
    • Mühlenbein H. The equation for response to selection and its use for prediction. Evol. Comput. 5 (1998) 303-346
    • (1998) Evol. Comput. , vol.5 , pp. 303-346
    • Mühlenbein, H.1
  • 33
    • 6444238786 scopus 로고    scopus 로고
    • Selected tree classifier combination based on both accuracy and error diversity
    • Shin H.W., and Sohn S.Y. Selected tree classifier combination based on both accuracy and error diversity. Pattern Recognition 38 (2005) 191-197
    • (2005) Pattern Recognition , vol.38 , pp. 191-197
    • Shin, H.W.1    Sohn, S.Y.2
  • 34
    • 0035501730 scopus 로고    scopus 로고
    • Pattern classification using multiple hierarchical overlapped self-organising maps
    • Suganthan P.N. Pattern classification using multiple hierarchical overlapped self-organising maps. Pattern Recognition 34 (2001) 2173-2179
    • (2001) Pattern Recognition , vol.34 , pp. 2173-2179
    • Suganthan, P.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.