메뉴 건너뛰기




Volumn 16, Issue 5, 2009, Pages 677-690

A regularized method for selecting nested groups of relevant genes from microarray data

Author keywords

Gene expression; Machine learning; Recognition of genes and regulatory elements

Indexed keywords

ARTICLE; EXPERIMENTAL STUDY; GENE; GENE EXPRESSION; GENE IDENTIFICATION; GENE REGULATORY NETWORK; MICROARRAY ANALYSIS; PREDICTION; PRIORITY JOURNAL; REGRESSION ANALYSIS;

EID: 67649271550     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2008.0171     Document Type: Article
Times cited : (46)

References (30)
  • 3
    • 31144459985 scopus 로고    scopus 로고
    • Oncogenic pathway signatures in human cancers as a guide to targetedtherapies
    • Bild, A., Yao, G., Chang, J. et al. 2006. Oncogenic pathway signatures in human cancers as a guide to targetedtherapies. Nature 439, 353-357.
    • (2006) Nature , vol.439 , pp. 353-357
    • Bild, A.1    Yao, G.2    Chang, J.3
  • 5
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with asparsity constraint
    • Daubechies, I., Defrise, M., and De Mol, C. 2004. An iterative thresholding algorithm for linear inverse problems with asparsity constraint. Commun. Pure Appl. Math. 57, 1413-1457.
    • (2004) Commun. Pure Appl. Math , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 6
    • 62549127689 scopus 로고    scopus 로고
    • Elastic-net regularization in learning theory
    • De Mol, C., De Vito, E., and Rosasco, L. 2009. Elastic-net regularization in learning theory. J.Complexity 25, 201-230.
    • (2009) J.Complexity , vol.25 , pp. 201-230
    • De Mol, C.1    De Vito, E.2    Rosasco, L.3
  • 7
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumorsusing gene expression data
    • Dudoit, S., Fridlyand, J., and Speed, T.P. 2002. Comparison of discrimination methods for the classification of tumorsusing gene expression data. J. Am. Statist. Assoc. 97, 77-87.
    • (2002) J. Am. Statist. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 9
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman, G. 2003. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res.3, 1289-1306.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1289-1306
    • Forman, G.1
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application toboosting
    • Freund Y., and Schapire, R. 1997. A decision-theoretic generalization of on-line learning and an application toboosting. J. Comput. System Sci. 55, 119-139.
    • (1997) J. Comput. System Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 11
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-based gene ranking without selection bias for the predictiveclassification of microarray data
    • Furlanello, C., Serafini, M., Merler, S. et al. 2003. Entropy-based gene ranking without selection bias for the predictiveclassification of microarray data. BMC Bioinform. 4, 54.
    • (2003) BMC Bioinform , vol.4 , pp. 54
    • Furlanello, C.1    Serafini, M.2    Merler, S.3
  • 12
    • 27744565003 scopus 로고    scopus 로고
    • Classification and selection of biomarkers in genomic data using lasso
    • Ghosh, D., and Chinnaiyan, A.M. 2005. Classification and selection of biomarkers in genomic data using lasso.J. Biomed. Biotechnol. 2, 147-154.
    • (2005) J. Biomed. Biotechnol , vol.2 , pp. 147-154
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 13
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class predictionby gene expression monitoring
    • Golub, T., Slonim, D., Tamayo, P. et al. 1999. Molecular classification of cancer: class discovery and class predictionby gene expression monitoring. Science 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3
  • 14
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancerdiagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon, R., Jensen, G.J., Hsiao, L.-L., et al. 2002. Translation of microarray data into clinically relevant cancerdiagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963-4967.
    • (2002) Cancer Res , vol.62 , pp. 4963-4967
    • Gordon, R.1    Jensen, G.J.2    Hsiao, L.-L.3
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., and Elisseeff, A. 2003. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S. et al. 2002. Gene selection for cancer classification using support vector machines.Mach. Learn. 46, 389-432.
    • (2002) Mach. Learn , vol.46 , pp. 389-432
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 18
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A.E., and Kennard, R. 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 19
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., and John, G. 1997. Wrappers for feature subset selection. Artif. Intellig. 97, 273-324.
    • (1997) Artif. Intellig , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 20
    • 33846193774 scopus 로고    scopus 로고
    • A note on the lasso and related procedures in model selection
    • Leng, C., Lin, Y., and Wahba, G. 2006. A note on the lasso and related procedures in model selection. Statist. Sinica 16,1273-1284.
    • (2006) Statist. Sinica , vol.16 , pp. 1273-1284
    • Leng, C.1    Lin, Y.2    Wahba, G.3
  • 21
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • Ma, S., and Huang, J. 2008. Penalized feature selection and classification in bioinformatics. Brief. Bioinform. 9, 392-103.
    • (2008) Brief. Bioinform , vol.9 , pp. 392-103
    • Ma, S.1    Huang, J.2
  • 22
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T., and Girosi, F. 1990.Regularization algorithms for learning that are equivalent to multilayer networks.Science 247, 978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 23
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., and Larranaga, P. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics23, 2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 24
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival phenotypes: Diffuse large-b-cell lymphoma revisited
    • Segal, M.R. 2006. Microarray gene expression data with linked survival phenotypes: diffuse large-b-cell lymphoma revisited. Biostatistics 7, 268-285.
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.R.1
  • 26
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh, D., Febbo, P.G., Ross, K. et al. 2002. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3
  • 27
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 56, 267-288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.56 , pp. 267-288
    • Tibshirani, R.1
  • 28
    • 84900616454 scopus 로고    scopus 로고
    • Kernel methods in genomics and computational biology
    • Camps-Valls, G, Rojo-Alvarez, J.L.,and Martinez-Ramon, M, eds, Idea Group,Hershey, PA
    • Vert, J. 2007. Kernel methods in genomics and computational biology, 42-63. In: Camps-Valls, G., Rojo-Alvarez, J.L.,and Martinez-Ramon, M., eds. Kernel Methods in Bioengineering, Signal and Image Processing. Idea Group,Hershey, PA.
    • (2007) Kernel Methods in Bioengineering, Signal and Image Processing , pp. 42-63
    • Vert, J.1
  • 29
  • 30
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, Z., and Hastie, T. 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301-320.
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, Z.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.