-
1
-
-
68749121819
-
Sparse probabilistic projections
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
C. Archambeau and F. Bach. Sparse probabilistic projections. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 73-80. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 73-80
-
-
Archambeau, C.1
Bach, F.2
-
2
-
-
18544375333
-
Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia
-
S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters, M. L. den Boer, M. D. Minden, S. E. Sallan, E. S. Lander, T. R. Golub, and S. J. Korsmeyer. Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics, 30:41-47, 2002.
-
(2002)
Nature Genetics
, vol.30
, pp. 41-47
-
-
Armstrong, S.A.1
Staunton, J.E.2
Silverman, L.B.3
Pieters, R.4
Den Boer, M.L.5
Minden, M.D.6
Sallan, S.E.7
Lander, E.S.8
Golub, T.R.9
Korsmeyer, S.J.10
-
3
-
-
62549125109
-
High-dimensional sparse factor modeling: Applications in gene expression genomics
-
C. Carvalho, J. Chang, J. Lucas, J. Nevins, Q. Wang, and M. West. High-dimensional sparse factor modeling: Applications in gene expression genomics. Journal of the American Statistical Association, 103(484):1438-1456, 2008.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.484
, pp. 1438-1456
-
-
Carvalho, C.1
Chang, J.2
Lucas, J.3
Nevins, J.4
Wang, Q.5
West, M.6
-
4
-
-
79958714651
-
Handling sparsity via the horseshoe
-
C. Carvalho, N. Polson, and J. Scott. Handling sparsity via the horseshoe. Journal of Machine Learning Research, W&CP 5:73-80, 2009.
-
(2009)
Journal of Machine Learning Research, W&CP
, vol.5
, pp. 73-80
-
-
Carvalho, C.1
Polson, N.2
Scott, J.3
-
9
-
-
33947409985
-
Factor analysis for gene regulatory networks and transcription factor activity profiles
-
I. Pournara and L.Wernisch. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics, 8:61, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 61
-
-
Pournara, I.1
Wernisch, L.2
-
10
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signatures
-
S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C.-H. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J. P. Mesirov, T. Poggio, W. Gerald, M. Loda, E. S. Lander, and T. R. Golub. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America, 98(26):15149-15154, 2001.
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.26
, pp. 15149-15154
-
-
Ramaswamy, S.1
Tamayo, P.2
Rifkin, R.3
Mukherjee, S.4
Yeang, C.-H.5
Angelo, M.6
Ladd, C.7
Reich, M.8
Latulippe, E.9
Mesirov, J.P.10
Poggio, T.11
Gerald, W.12
Loda, M.13
Lander, E.S.14
Golub, T.R.15
-
11
-
-
74349093161
-
Inference algorithms and learning theory for Bayesian sparse factor analysis
-
10pp
-
M. Rattray, O. Stegle, K. Sharp, and J. Winn. Inference algorithms and learning theory for Bayesian sparse factor analysis. Journal of Physics: Conference Series, 197: 012002 (10pp), 2009.
-
(2009)
Journal of Physics: Conference Series
, vol.197
, pp. 012002
-
-
Rattray, M.1
Stegle, O.2
Sharp, K.3
Winn, J.4
-
13
-
-
33645107349
-
Bayesian sparse hidden components analysis for transcription regulation networks
-
C. Sabatti and G. M. James. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 22(6):739-746, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.6
, pp. 739-746
-
-
Sabatti, C.1
James, G.M.2
-
17
-
-
24644460528
-
Statistical mechanical development of a sparse Bayesian classifier
-
S. Uda and Y. Kabashima. Statistical mechanical development of a sparse Bayesian classifier. Journal of the Physical Society of Japan, 74:2233-2242, 2005.
-
(2005)
Journal of the Physical Society of Japan
, vol.74
, pp. 2233-2242
-
-
Uda, S.1
Kabashima, Y.2
-
18
-
-
0242295767
-
Bayesian factor regression models in the 'Large p Small n' paradigm
-
M. West. Bayesian factor regression models in the 'Large p, Small n' paradigm. Bayesian Statistics, 7:723-732, 2003.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
West, M.1
-
19
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
P. Williams. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7:117-143, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 117-143
-
-
Williams, P.1
-
20
-
-
85161974668
-
A new view of automatic relevance determination
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
D. Wipf and S. Nagarajan. A new view of automatic relevance determination. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1625-1632. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1625-1632
-
-
Wipf, D.1
Nagarajan, S.2
|