메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 725-732

Dense message passing for sparse principal component analysis

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN INFERENCE; GENE EXPRESSION DATASETS; HIGH-DIMENSIONAL; INFERENCE ALGORITHM; INFERENCE PROBLEM; MEAN-FIELD; MESSAGE PASSING ALGORITHM; MODEL PARAMETERS; NEAR-OPTIMAL PERFORMANCE; PROBABILISTIC MODELS; SPARSE CLASSIFICATION; SPARSE PRINCIPAL COMPONENT ANALYSIS; STATISTICAL PHYSICS; SYNTHETIC DATA; VARIATIONAL BAYES;

EID: 84862288022     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (21)
  • 1
    • 68749121819 scopus 로고    scopus 로고
    • Sparse probabilistic projections
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • C. Archambeau and F. Bach. Sparse probabilistic projections. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 73-80. 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 73-80
    • Archambeau, C.1    Bach, F.2
  • 9
    • 33947409985 scopus 로고    scopus 로고
    • Factor analysis for gene regulatory networks and transcription factor activity profiles
    • I. Pournara and L.Wernisch. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics, 8:61, 2007.
    • (2007) BMC Bioinformatics , vol.8 , pp. 61
    • Pournara, I.1    Wernisch, L.2
  • 11
    • 74349093161 scopus 로고    scopus 로고
    • Inference algorithms and learning theory for Bayesian sparse factor analysis
    • 10pp
    • M. Rattray, O. Stegle, K. Sharp, and J. Winn. Inference algorithms and learning theory for Bayesian sparse factor analysis. Journal of Physics: Conference Series, 197: 012002 (10pp), 2009.
    • (2009) Journal of Physics: Conference Series , vol.197 , pp. 012002
    • Rattray, M.1    Stegle, O.2    Sharp, K.3    Winn, J.4
  • 13
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • C. Sabatti and G. M. James. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 22(6):739-746, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 739-746
    • Sabatti, C.1    James, G.M.2
  • 17
    • 24644460528 scopus 로고    scopus 로고
    • Statistical mechanical development of a sparse Bayesian classifier
    • S. Uda and Y. Kabashima. Statistical mechanical development of a sparse Bayesian classifier. Journal of the Physical Society of Japan, 74:2233-2242, 2005.
    • (2005) Journal of the Physical Society of Japan , vol.74 , pp. 2233-2242
    • Uda, S.1    Kabashima, Y.2
  • 18
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the 'Large p Small n' paradigm
    • M. West. Bayesian factor regression models in the 'Large p, Small n' paradigm. Bayesian Statistics, 7:723-732, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 19
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • P. Williams. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7:117-143, 1995.
    • (1995) Neural Computation , vol.7 , pp. 117-143
    • Williams, P.1
  • 20
    • 85161974668 scopus 로고    scopus 로고
    • A new view of automatic relevance determination
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
    • D. Wipf and S. Nagarajan. A new view of automatic relevance determination. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1625-1632. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1625-1632
    • Wipf, D.1    Nagarajan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.