메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 98-107

Cost sensitive and preprocessing for classification with imbalanced data-sets: Similar behaviour and potential hybridizations

Author keywords

Classification; Cost sensitive learning; Hybridizations; Imbalanced data sets; Preprocessing; Sampling

Indexed keywords

CLASS IMBALANCE PROBLEMS; COMPARATIVE ANALYSIS; COST-SENSITIVE; COST-SENSITIVE LEARNING; DATA SETS; HIGH COSTS; HYBRID PROCEDURE; HYBRIDIZATIONS; IMBALANCED DATA-SETS; MISCLASSIFICATION COSTS; OVER SAMPLING; PREPROCESSING; REAL APPLICATIONS; UNDER-SAMPLING;

EID: 84862183513     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (47)
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behaviour of several methods for balancing machine learning training data
    • Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explorations, 6(1):20-29.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 6
    • 50549101751 scopus 로고    scopus 로고
    • Automatically countering imbalance and its empirical relationship to cost
    • Chawla, N. V., Cieslak, D. A., Hall, L. O., and Joshi, A. (2008). Automatically countering imbalance and its empirical relationship to cost. Data Mining and Knowledge Discovery, 17(2):225-252.
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 225-252
    • Chawla, N.V.1    Cieslak, D.A.2    Hall, L.O.3    Joshi, A.4
  • 7
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla, N. V., Japkowicz, N., and Kotcz, A. (2004). Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations, 6(1):1-6.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 8
    • 78650905163 scopus 로고    scopus 로고
    • Graph- based feature selection for object-oriented classification in VHR airborne imagery
    • Chen, X., Fang, T., Huo, H., and Li, D. (2011). Graph- based feature selection for object-oriented classification in VHR airborne imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(1):353-365.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.1 , pp. 353-365
    • Chen, X.1    Fang, T.2    Huo, H.3    Li, D.4
  • 9
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Dem̌sar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Dem̌sar, J.1
  • 12
    • 77952875468 scopus 로고    scopus 로고
    • Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
    • Ducange, P., Lazzerini, B., and Marcelloni, F. (2010). Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. Soft Computing, 14(7):713-728.
    • (2010) Soft Computing , vol.14 , Issue.7 , pp. 713-728
    • Ducange, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 14
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks, A., Jo, T., and Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1):18-36.
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 15
    • 75149159107 scopus 로고    scopus 로고
    • On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
    • Fernández, A., del Jesus, M. J., and Herrera, F. (2010). On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets. Information Sciences, 180(8):1268-1291.
    • (2010) Information Sciences , vol.180 , Issue.8 , pp. 1268-1291
    • Fernández, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 16
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • Fernández, A., García, S., del Jesus, M. J., and Herrera, F. (2008). A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets and Systems, 159(18):2378-2398.
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.18 , pp. 2378-2398
    • Fernández, A.1    García, S.2    Del Jesus, M.J.3    Herrera, F.4
  • 18
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • García, S., Fernández, A., and Herrera, F. (2009). Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Applied Soft Computing, 9:1304-1314.
    • (2009) Applied Soft Computing , vol.9 , pp. 1304-1314
    • García, S.1    Fernández, A.2    Herrera, F.3
  • 19
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • García, S., Fernández, A., Luengo, J., and Herrera, F. (2009). A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Computing, 13(10):959-977.
    • (2009) Soft Computing , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 20
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • García, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10):2044-2064.
    • (2010) Information Sciences , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 21
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • García, S. and Herrera, F. (2008). An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. Journal of Machine Learning Research, 9:2607-2624.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2607-2624
    • García, S.1    Herrera, F.2
  • 25
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N. and Stephen, S. (2002). The class imbalance problem: a systematic study. Intelligent Data Analysis Journal, 6(5):429-450.
    • (2002) Intelligent Data Analysis Journal , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 26
    • 38349102533 scopus 로고    scopus 로고
    • Feature extraction for classification problems and its application to face recognition
    • Kwak, N. (2008). Feature extraction for classification problems and its application to face recognition. Pattern Recognition, 41(5):1718-1734.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1718-1734
    • Kwak, N.1
  • 29
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
    • Mazurowski, M. A., Habas, P. A., Zurada, J. M., Lo, J. Y., Baker, J. A., and Tourassi, G. D. (2008). Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Networks, 21(2-3).
    • (2008) Neural Networks , vol.21 , pp. 2-3
    • Mazurowski, M.A.1    Habas, P.A.2    Zurada, J.M.3    Lo, J.Y.4    Baker, J.A.5    Tourassi, G.D.6
  • 31
    • 0028202408 scopus 로고
    • Representation design and brute-force induction in a boeing manufacturing domain
    • Riddle, P., Segal, R., and Etzioni, O. (1994). Representation design and brute-force induction in a boeing manufacturing domain. Applied Artificial Intelligence, 8:125- 147.
    • (1994) Applied Artificial Intelligence , vol.8 , pp. 125-147
    • Riddle, P.1    Segal, R.2    Etzioni, O.3
  • 32
    • 84890829458 scopus 로고
    • Modified sequentially rejective multiple test procedures
    • Shaffer, J. (1986). Modified sequentially rejective multiple test procedures. Journal of the American Statistical Association, 81(395):826-831.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.395 , pp. 826-831
    • Shaffer, J.1
  • 35
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., Kamel, M. S., Wong, A. K. C., and Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12):3358- 3378.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 37
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering, 14(3):659-665.
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 38
    • 0000865580 scopus 로고
    • Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research, 2:369-409.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.1
  • 40
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • Weiss, G. M. (2004). Mining with rarity: a unifying framework. SIGKDD Explorations, 6(1):7-19.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 41
    • 50549089793 scopus 로고    scopus 로고
    • Maximizing classifier utility when there are data acquisition and modeling costs
    • Weiss, G. M. and Tian, Y. (2008). Maximizing classifier utility when there are data acquisition and modeling costs. Data Mining and Knowledge Discovery, 17(2):253-282.
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 253-282
    • Weiss, G.M.1    Tian, Y.2
  • 42
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man and Cybernetics, 2(3):408 -421.
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 43
    • 71949090298 scopus 로고    scopus 로고
    • The Top ten algorithms in data mining
    • editors. Chapman and Hall/CRC press
    • Wu, X. and Kumar, V., editors (2009). The Top ten algorithms in data mining. Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC press.
    • (2009) Data Mining and Knowledge Discovery Series
    • Wu, X.1    Kumar, V.2
  • 47
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z.-H. and Liu, X.-Y. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18(1):63-77.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.