메뉴 건너뛰기




Volumn 62, Issue 3, 2006, Pages 217-252

Additive regularization trade-off: Fusion of training and validation levels in kernel methods

Author keywords

Least Squares Support Vector Machines; Model selection; Optimizatioon; Regulatization

Indexed keywords

DATABASE SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION; PROBLEM SOLVING;

EID: 33644990982     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-005-5315-x     Document Type: Article
Times cited : (17)

References (48)
  • 1
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • Akaike, H. (1973). Statistical predictor identification. Ann. Inst. Statist. Math, 22, 203-217.
    • (1973) Ann. Inst. Statist. Math , vol.22 , pp. 203-217
    • Akaike, H.1
  • 6
    • 84899006163 scopus 로고    scopus 로고
    • On the complexity of learning the kernel matrix
    • Becker, S., Thrun, S. & Obermayer, K. (Eds.), MIT Press, Cambridge, MA
    • Herrmann, D. J. L. & Bousquet, O. (2003). On the complexity of learning the kernel matrix. In Becker, S., Thrun, S. & Obermayer, K. (Eds.), Advances in Neural Information Processing Systems MIT Press, Cambridge, MA, (pp. 399-406).
    • (2003) Advances in Neural Information Processing Systems , pp. 399-406
    • Herrmann, D.J.L.1    Bousquet, O.2
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
    • Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3), 503-514.
    • (1989) Biometrika , vol.76 , Issue.3 , pp. 503-514
    • Burman, P.1
  • 9
    • 0141639615 scopus 로고    scopus 로고
    • Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers
    • Cawley, G. C., & Talbot, N.L.C (2003). Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers. Pattern Recognition, 56(11), 2585-2592.
    • (2003) Pattern Recognition , vol.56 , Issue.11 , pp. 2585-2592
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 10
    • 84899010634 scopus 로고    scopus 로고
    • Model selection for support vector machines
    • S. A. Solla, T. K. Leen & K.-R. Muller, (Eds) MIT Press
    • Chapelle, O., & Vapnik, V. (2000). Model selection for support vector machines. Advances in Neural Information Processing Systems, S. A. Solla, T. K. Leen & K.-R. Muller, (Eds) MIT Press, 12.
    • (2000) Advances in Neural Information Processing Systems , pp. 12
    • Chapelle, O.1    Vapnik, V.2
  • 11
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3), 131-159.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 13
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31, 377-390.
    • (1979) Numer. Math. , vol.31 , pp. 377-390
    • Craven, P.1    Wahba, G.2
  • 14
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • Cucker, F., & Smale, S. (2002). Best choices for regularization parameters in learning theory: On the bias-variance problem. Foundations of Computational Mathematics, 2(4), 413-428.
    • (2002) Foundations of Computational Mathematics , vol.2 , Issue.4 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 17
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21, 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 19
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristics
    • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristics. Radiology, 143, 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 20
    • 0000570697 scopus 로고
    • Analysis of discrete ill-posed problems by means of the L-curve
    • Hansen, P. C., (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34(4), 561-580.
    • (1992) SIAM Review , vol.34 , Issue.4 , pp. 561-580
    • Hansen, P.C.1
  • 22
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12(1), 5582.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 5582
    • Hoerl, A.E.1    Kennard, R.W.2
  • 24
    • 0000900996 scopus 로고    scopus 로고
    • A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split
    • Kearns, M. (1997). A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split. Neural Computation, 9(5), 1143-1161.
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 1143-1161
    • Kearns, M.1
  • 26
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay, D. J. C. (1992). The evidence framework applied to classification networks. Neural Computation, 4, 698-714.
    • (1992) Neural Computation , vol.4 , pp. 698-714
    • MacKay, D.J.C.1
  • 27
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to Gaussian processes
    • (Ed. C.M. Bishop), Springer NATO-ASI Series F: Computer and Systems Sciences
    • MacKay, D. J. C. (1998). Introduction to Gaussian processes. In Neural networks and machine learning (Ed. C.M. Bishop), Springer NATO-ASI Series F: Computer and Systems Sciences, 168, 133-165.
    • (1998) In Neural Networks and Machine Learning , vol.168 , pp. 133-165
    • MacKay, D.J.C.1
  • 31
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble method for neural networks
    • R. J. Mammone (Ed.), Chapman-Hall
    • Perrone, M. P. & Cooper, L. N. (1993). When networks disagree: Ensemble method for neural networks. In R. J. Mammone (Ed.), Neural Networks for Speech and Image Processing, Chapman-Hall.
    • (1993) Neural Networks for Speech and Image Processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 32
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 34
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • Rissanen, J. (1978). Modelling by shortest Data Description. Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 38
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Royal Statist. Soc. Ser. B, 36, 111-147.
    • (1974) J. Royal Statist. Soc. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 39
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293-300.
    • (1999) Neural Processing Letters , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 42
    • 10944264334 scopus 로고    scopus 로고
    • Suykens, J. A. K., Horvath, G., Basu, S., Micchelli, C., Vandewalle, J. (Eds.) NATO Science Series III: Computer & Systems Sciences, IDS Press Amsterdam
    • Suykens, J. A. K., Horvath, G., Basu, S., Micchelli, C., Vandewalle, J. (Eds.) (2003) Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer & Systems Sciences, 190, IDS Press Amsterdam.
    • (2003) Advances in Learning Theory: Methods, Models and Applications , pp. 190
  • 48


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.