-
1
-
-
51249190305
-
Statistical predictor identification
-
Akaike, H. (1973). Statistical predictor identification. Ann. Inst. Statist. Math, 22, 203-217.
-
(1973)
Ann. Inst. Statist. Math
, vol.22
, pp. 203-217
-
-
Akaike, H.1
-
2
-
-
0024057651
-
Ill-posed problems in early vision
-
Bertero, M., Poggio, T. A., & Torre, T. (1988). Ill-posed problems in early vision. Proceedings of the IEEE, 76(8), 869-889.
-
(1988)
Proceedings of the IEEE
, vol.76
, Issue.8
, pp. 869-889
-
-
Bertero, M.1
Poggio, T.A.2
Torre, T.3
-
6
-
-
84899006163
-
On the complexity of learning the kernel matrix
-
Becker, S., Thrun, S. & Obermayer, K. (Eds.), MIT Press, Cambridge, MA
-
Herrmann, D. J. L. & Bousquet, O. (2003). On the complexity of learning the kernel matrix. In Becker, S., Thrun, S. & Obermayer, K. (Eds.), Advances in Neural Information Processing Systems MIT Press, Cambridge, MA, (pp. 399-406).
-
(2003)
Advances in Neural Information Processing Systems
, pp. 399-406
-
-
Herrmann, D.J.L.1
Bousquet, O.2
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
0000354976
-
A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
-
Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3), 503-514.
-
(1989)
Biometrika
, vol.76
, Issue.3
, pp. 503-514
-
-
Burman, P.1
-
9
-
-
0141639615
-
Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers
-
Cawley, G. C., & Talbot, N.L.C (2003). Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers. Pattern Recognition, 56(11), 2585-2592.
-
(2003)
Pattern Recognition
, vol.56
, Issue.11
, pp. 2585-2592
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
10
-
-
84899010634
-
Model selection for support vector machines
-
S. A. Solla, T. K. Leen & K.-R. Muller, (Eds) MIT Press
-
Chapelle, O., & Vapnik, V. (2000). Model selection for support vector machines. Advances in Neural Information Processing Systems, S. A. Solla, T. K. Leen & K.-R. Muller, (Eds) MIT Press, 12.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 12
-
-
Chapelle, O.1
Vapnik, V.2
-
11
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3), 131-159.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
13
-
-
34250263445
-
Smoothing noisy data with spline functions
-
Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31, 377-390.
-
(1979)
Numer. Math.
, vol.31
, pp. 377-390
-
-
Craven, P.1
Wahba, G.2
-
14
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
Cucker, F., & Smale, S. (2002). Best choices for regularization parameters in learning theory: On the bias-variance problem. Foundations of Computational Mathematics, 2(4), 413-428.
-
(2002)
Foundations of Computational Mathematics
, vol.2
, Issue.4
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
15
-
-
33644980190
-
Robust cross-validation score function for non-linear function estimation
-
Madrid, Spain
-
De Brabanter, J., Pelckmans, K., Suykens, J. A. K., & Vandewalle, J. (2000). Robust cross-validation score function for non-linear function estimation. In Proceedings of the International Conference on Artificial Neural Networks (ICANN 2002), Madrid, Spain, 713-719.
-
(2000)
Proceedings of the International Conference on Artificial Neural Networks (ICANN 2002)
, pp. 713-719
-
-
De Brabanter, J.1
Pelckmans, K.2
Suykens, J.A.K.3
Vandewalle, J.4
-
16
-
-
33644967011
-
Robust complexity criteria for nonlinear regression in NARX models
-
Rotterdam, the Netherlands
-
De Brabanter, J., Pelckmans, K., Suykens, J. A. K., De Moor, B., & Vandewalle, J. (2003). Robust complexity criteria for nonlinear regression in NARX models. In Proceedings of the 13th System Identification Symposium (SYSID2003), Rotterdam, the Netherlands (pp. 79-84).
-
(2003)
Proceedings of the 13th System Identification Symposium (SYSID2003)
, pp. 79-84
-
-
De Brabanter, J.1
Pelckmans, K.2
Suykens, J.A.K.3
De Moor, B.4
Vandewalle, J.5
-
17
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21, 215-223.
-
(1979)
Technometrics
, vol.21
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
19
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristics
-
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristics. Radiology, 143, 29-36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
20
-
-
0000570697
-
Analysis of discrete ill-posed problems by means of the L-curve
-
Hansen, P. C., (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34(4), 561-580.
-
(1992)
SIAM Review
, vol.34
, Issue.4
, pp. 561-580
-
-
Hansen, P.C.1
-
21
-
-
0003684449
-
-
Springer-Verlag, Heidelberg
-
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. Springer-Verlag, Heidelberg.
-
(2001)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
22
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12(1), 5582.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 5582
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
24
-
-
0000900996
-
A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split
-
Kearns, M. (1997). A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split. Neural Computation, 9(5), 1143-1161.
-
(1997)
Neural Computation
, vol.9
, Issue.5
, pp. 1143-1161
-
-
Kearns, M.1
-
25
-
-
8844278523
-
Learning the Kernel Matrix with semidefinite programming
-
Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M. I. (2004). Learning the Kernel Matrix with semidefinite programming, Journal of Machine Learning Research, 5(Jan), 27-72.
-
(2004)
Journal of Machine Learning Research
, vol.5
, Issue.JAN
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
26
-
-
0000234257
-
The evidence framework applied to classification networks
-
MacKay, D. J. C. (1992). The evidence framework applied to classification networks. Neural Computation, 4, 698-714.
-
(1992)
Neural Computation
, vol.4
, pp. 698-714
-
-
MacKay, D.J.C.1
-
27
-
-
0003319647
-
Introduction to Gaussian processes
-
(Ed. C.M. Bishop), Springer NATO-ASI Series F: Computer and Systems Sciences
-
MacKay, D. J. C. (1998). Introduction to Gaussian processes. In Neural networks and machine learning (Ed. C.M. Bishop), Springer NATO-ASI Series F: Computer and Systems Sciences, 168, 133-165.
-
(1998)
In Neural Networks and Machine Learning
, vol.168
, pp. 133-165
-
-
MacKay, D.J.C.1
-
30
-
-
84945179028
-
Variogram based noise variance estimation and its use in Kernel Based Regression
-
Toulouse, France
-
Pelckmans, K., De Brabanter, J., Suykens, J. A. K., & De Moor, B. (2003). Variogram based noise variance estimation and its use in Kernel Based Regression. In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, 8, Toulouse, France (pp. 199-208).
-
(2003)
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing
, vol.8
, pp. 199-208
-
-
Pelckmans, K.1
De Brabanter, J.2
Suykens, J.A.K.3
De Moor, B.4
-
31
-
-
0000926506
-
When networks disagree: Ensemble method for neural networks
-
R. J. Mammone (Ed.), Chapman-Hall
-
Perrone, M. P. & Cooper, L. N. (1993). When networks disagree: Ensemble method for neural networks. In R. J. Mammone (Ed.), Neural Networks for Speech and Image Processing, Chapman-Hall.
-
(1993)
Neural Networks for Speech and Image Processing
-
-
Perrone, M.P.1
Cooper, L.N.2
-
32
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
34
-
-
0018015137
-
Modelling by shortest data description
-
Rissanen, J. (1978). Modelling by shortest Data Description. Automatica, 14, 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
36
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
Morgan Kaufmann
-
Saunders, C., Gammerman, A., & Vovk, V. (1998). Ridge regression learning algorithm in dual variables. Proceedings of the 15th Int. Conf. on Machine learning (ICML'98), Morgan Kaufmann, 515-521.
-
(1998)
Proceedings of the 15th Int. Conf. on Machine Learning (ICML'98)
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
37
-
-
0003754828
-
-
Springer
-
Sen, A., & Srivastava, M. (1990). Regression Analysis, Theory, Methods, and Applications. Springer.
-
(1990)
Regression Analysis, Theory, Methods, and Applications
-
-
Sen, A.1
Srivastava, M.2
-
38
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Royal Statist. Soc. Ser. B, 36, 111-147.
-
(1974)
J. Royal Statist. Soc. Ser. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
39
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
40
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens, J. A. K., De Brabanter, J., Lukas, L., & Vandewalle, J. (2002a). Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing, 48(1-4), 85-105.
-
(2002)
Neurocomputing, Special Issue on Fundamental and Information Processing Aspects of Neurocomputing
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
41
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002b). Least Squares Support Vector Machines. World Scientific, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
42
-
-
10944264334
-
-
Suykens, J. A. K., Horvath, G., Basu, S., Micchelli, C., Vandewalle, J. (Eds.) NATO Science Series III: Computer & Systems Sciences, IDS Press Amsterdam
-
Suykens, J. A. K., Horvath, G., Basu, S., Micchelli, C., Vandewalle, J. (Eds.) (2003) Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer & Systems Sciences, 190, IDS Press Amsterdam.
-
(2003)
Advances in Learning Theory: Methods, Models and Applications
, pp. 190
-
-
-
48
-
-
0003466536
-
-
Series in Applied Mathematics, SIAM, Philadelphia
-
Wahba, G. (1990). Splines Models for Observational Data. Series in Applied Mathematics, 59, SIAM, Philadelphia.
-
(1990)
Splines Models for Observational Data
, pp. 59
-
-
Wahba, G.1
|