메뉴 건너뛰기




Volumn 69, Issue 1-3, 2005, Pages 100-122

The differogram: Non-parametric noise variance estimation and its use for model selection

Author keywords

Complexity criteria; Kernel methods; Least squares support vector machines; Morozov's discrepancy method; Noise level

Indexed keywords

COMPUTER SIMULATION; LAGRANGE MULTIPLIERS; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; MATRIX ALGEBRA; PARAMETER ESTIMATION; PROBABILITY DENSITY FUNCTION; VECTORS;

EID: 27844500576     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2005.02.015     Document Type: Article
Times cited : (20)

References (38)
  • 1
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • H. Akaike Statistical predictor identification Ann. Inst. Statist. Math. 22 1973 203-217
    • (1973) Ann. Inst. Statist. Math. , vol.22 , pp. 203-217
    • Akaike, H.1
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 4
    • 0000123142 scopus 로고
    • The estimation of residual variance in nonparametric regression
    • M.J. Buckley G.K. Eagleson The estimation of residual variance in nonparametric regression Biometrika 75 2 1988 189-199
    • (1988) Biometrika , vol.75 , Issue.2 , pp. 189-199
    • Buckley, M.J.1    Eagleson, G.K.2
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle V. Vapnik O. Bousquet S. Mukherjee Choosing multiple parameters for support vector machines Machine Learning 46 1-3 2002 131-159
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 6
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for svm regression
    • V. Cherkassky Ma. Yunqian Practical selection of SVM parameters and noise estimation for svm regression Neural Networks 17 2004 113-126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Yunqian, Ma.2
  • 12
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou M. Pontil T. Poggio Regularization networks and support vector machines Adv. Comput. Math. 13 1 2000 1-50
    • (2000) Adv. Comput. Math. , vol.13 , Issue.1 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 13
    • 0001106460 scopus 로고
    • Residual variance and residual pattern in nonlinear regression
    • T. Gasser L. Sroka C. Jennen-Steinmetz Residual variance and residual pattern in nonlinear regression Biometrika 73 1986 625-633
    • (1986) Biometrika , vol.73 , pp. 625-633
    • Gasser, T.1    Sroka, L.2    Jennen-Steinmetz, C.3
  • 18
    • 0001744704 scopus 로고
    • A class of statistics with asymptotically normal distribution
    • W. Hoeffding A class of statistics with asymptotically normal distribution Ann. Math. Stat. 19 1948 293-325
    • (1948) Ann. Math. Stat. , vol.19 , pp. 293-325
    • Hoeffding, W.1
  • 20
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • P.J. Huber Robust estimation of a location parameter Ann. Math. Statist. 35 1964 73-101
    • (1964) Ann. Math. Statist. , vol.35 , pp. 73-101
    • Huber, P.J.1
  • 22
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D.J.C. MacKay The evidence framework applied to classification networks Neural Comput. 4 1992 698-714
    • (1992) Neural Comput. , vol.4 , pp. 698-714
    • MacKay, D.J.C.1
  • 23
    • 84915425007 scopus 로고
    • Some comments on Cp
    • C.L. Mallows Some comments on Cp Technometrics 15 1973 661-675
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 24
    • 0004031293 scopus 로고
    • Introduction to the theory of statistics
    • Series in Probability and Statistics McGraw-Hill
    • A.M. Mood F.A. Graybill D.C. Boes Introduction to the theory of statistics, Series in Probability and Statistics 1963 McGraw-Hill
    • (1963)
    • Mood, A.M.1    Graybill, F.A.2    Boes, D.C.3
  • 26
    • 0037562810 scopus 로고    scopus 로고
    • Estimating the error variance in nonparametric regression by a covariate-matched U-statistic
    • U.U. Müller A. Schick W. Wefelmeyer Estimating the error variance in nonparametric regression by a covariate-matched U-statistic Statistics 37 3 2003 179-188
    • (2003) Statistics , vol.37 , Issue.3 , pp. 179-188
    • Müller, U.U.1    Schick, A.2    Wefelmeyer, W.3
  • 27
    • 0032163862 scopus 로고    scopus 로고
    • Solving ill-conditioned and singular linear systems: A tutorial on regularization
    • A. Neumaier Solving ill-conditioned and singular linear systems: A tutorial on regularization SIAM Review 40 3 1998 636-666
    • (1998) SIAM Review , vol.40 , Issue.3 , pp. 636-666
    • Neumaier, A.1
  • 28
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio F. Girosi Networks for approximation and learning Proc. IEEE 78 9 1990 1481-1497
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 29
    • 0000006440 scopus 로고
    • Bandwidth choice for nonparametric regression
    • J. Rice, Bandwidth choice for nonparametric regression, Ann. Stat. (12) (1984) 1215-1230.
    • (1984) Ann. Stat. , Issue.12 , pp. 1215-1230
    • Rice, J.1
  • 31
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz Estimating the dimension of a model Ann. Stat. 6 1979 461-464
    • (1979) Ann. Stat. , vol.6 , pp. 461-464
    • Schwartz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.