-
1
-
-
51249190305
-
Statistical predictor identification
-
H. Akaike Statistical predictor identification Ann. Inst. Statist. Math. 22 1973 203-217
-
(1973)
Ann. Inst. Statist. Math.
, vol.22
, pp. 203-217
-
-
Akaike, H.1
-
3
-
-
0003408496
-
UCI repository of machine learning databases
-
C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998.
-
(1998)
-
-
Blake, C.L.1
Merz, C.J.2
-
4
-
-
0000123142
-
The estimation of residual variance in nonparametric regression
-
M.J. Buckley G.K. Eagleson The estimation of residual variance in nonparametric regression Biometrika 75 2 1988 189-199
-
(1988)
Biometrika
, vol.75
, Issue.2
, pp. 189-199
-
-
Buckley, M.J.1
Eagleson, G.K.2
-
6
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for svm regression
-
V. Cherkassky Ma. Yunqian Practical selection of SVM parameters and noise estimation for svm regression Neural Networks 17 2004 113-126
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Yunqian, Ma.2
-
12
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou M. Pontil T. Poggio Regularization networks and support vector machines Adv. Comput. Math. 13 1 2000 1-50
-
(2000)
Adv. Comput. Math.
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
13
-
-
0001106460
-
Residual variance and residual pattern in nonlinear regression
-
T. Gasser L. Sroka C. Jennen-Steinmetz Residual variance and residual pattern in nonlinear regression Biometrika 73 1986 625-633
-
(1986)
Biometrika
, vol.73
, pp. 625-633
-
-
Gasser, T.1
Sroka, L.2
Jennen-Steinmetz, C.3
-
18
-
-
0001744704
-
A class of statistics with asymptotically normal distribution
-
W. Hoeffding A class of statistics with asymptotically normal distribution Ann. Math. Stat. 19 1948 293-325
-
(1948)
Ann. Math. Stat.
, vol.19
, pp. 293-325
-
-
Hoeffding, W.1
-
20
-
-
0003157339
-
Robust estimation of a location parameter
-
P.J. Huber Robust estimation of a location parameter Ann. Math. Statist. 35 1964 73-101
-
(1964)
Ann. Math. Statist.
, vol.35
, pp. 73-101
-
-
Huber, P.J.1
-
22
-
-
0000234257
-
The evidence framework applied to classification networks
-
D.J.C. MacKay The evidence framework applied to classification networks Neural Comput. 4 1992 698-714
-
(1992)
Neural Comput.
, vol.4
, pp. 698-714
-
-
MacKay, D.J.C.1
-
23
-
-
84915425007
-
Some comments on Cp
-
C.L. Mallows Some comments on Cp Technometrics 15 1973 661-675
-
(1973)
Technometrics
, vol.15
, pp. 661-675
-
-
Mallows, C.L.1
-
24
-
-
0004031293
-
Introduction to the theory of statistics
-
Series in Probability and Statistics McGraw-Hill
-
A.M. Mood F.A. Graybill D.C. Boes Introduction to the theory of statistics, Series in Probability and Statistics 1963 McGraw-Hill
-
(1963)
-
-
Mood, A.M.1
Graybill, F.A.2
Boes, D.C.3
-
26
-
-
0037562810
-
Estimating the error variance in nonparametric regression by a covariate-matched U-statistic
-
U.U. Müller A. Schick W. Wefelmeyer Estimating the error variance in nonparametric regression by a covariate-matched U-statistic Statistics 37 3 2003 179-188
-
(2003)
Statistics
, vol.37
, Issue.3
, pp. 179-188
-
-
Müller, U.U.1
Schick, A.2
Wefelmeyer, W.3
-
27
-
-
0032163862
-
Solving ill-conditioned and singular linear systems: A tutorial on regularization
-
A. Neumaier Solving ill-conditioned and singular linear systems: A tutorial on regularization SIAM Review 40 3 1998 636-666
-
(1998)
SIAM Review
, vol.40
, Issue.3
, pp. 636-666
-
-
Neumaier, A.1
-
28
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio F. Girosi Networks for approximation and learning Proc. IEEE 78 9 1990 1481-1497
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
29
-
-
0000006440
-
Bandwidth choice for nonparametric regression
-
J. Rice, Bandwidth choice for nonparametric regression, Ann. Stat. (12) (1984) 1215-1230.
-
(1984)
Ann. Stat.
, Issue.12
, pp. 1215-1230
-
-
Rice, J.1
-
31
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwartz Estimating the dimension of a model Ann. Stat. 6 1979 461-464
-
(1979)
Ann. Stat.
, vol.6
, pp. 461-464
-
-
Schwartz, G.1
-
35
-
-
0035392694
-
Financial time series prediction using least squares support vector machines within the evidence framework
-
T. Van Gestel J.A.K. Suykens D. Baestaens A. Lambrechts G. Lanckriet B. Vandaele B. De Moor J. Vandewalle Financial time series prediction using least squares support vector machines within the evidence framework IEEE Trans. Neural Networks (special issue on Neural Networks in Financial Engineering) 12 4 2001 809-821
-
(2001)
IEEE Trans. Neural Networks (special Issue on Neural Networks in Financial Engineering)
, vol.12
, Issue.4
, pp. 809-821
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baestaens, D.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
De Moor, B.7
Vandewalle, J.8
|