-
1
-
-
0032190608
-
Regulation of glucose utilization in yeast
-
Carlson M. Regulation of glucose utilization in yeast. Curr Opin Genet Dev 1998, 8:560-564.
-
(1998)
Curr Opin Genet Dev
, vol.8
, pp. 560-564
-
-
Carlson, M.1
-
2
-
-
0032568542
-
Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
-
Ludin K, Jiang R, Carlson M. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1998, 95:6245-6250.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 6245-6250
-
-
Ludin, K.1
Jiang, R.2
Carlson, M.3
-
3
-
-
0038690443
-
The top genes: on the distance from transcript to function in yeast glycolysis
-
Fraenkel DG. The top genes: on the distance from transcript to function in yeast glycolysis. Curr Opin Microbiol 2003, 6:198-201.
-
(2003)
Curr Opin Microbiol
, vol.6
, pp. 198-201
-
-
Fraenkel, D.G.1
-
4
-
-
44849104320
-
The early steps of glucose signalling in yeast
-
Gancedo JM. The early steps of glucose signalling in yeast. FEMS Microbiol Rev 2008, 32:673-704.
-
(2008)
FEMS Microbiol Rev
, vol.32
, pp. 673-704
-
-
Gancedo, J.M.1
-
5
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev 1998, 62:334-361.
-
(1998)
Microbiol Mol Biol Rev
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
6
-
-
58549084410
-
How Saccharomyces responds to nutrients
-
Zaman S, Lippman SI, Zhao X, Broach JR. How Saccharomyces responds to nutrients. Annu Rev Genet 2008, 42:27-81.
-
(2008)
Annu Rev Genet
, vol.42
, pp. 27-81
-
-
Zaman, S.1
Lippman, S.I.2
Zhao, X.3
Broach, J.R.4
-
7
-
-
65649130030
-
Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions
-
van den Brink J, Akeroyd M, van der Hoeven R, Pronk JT, de Winde JH, Daran-Lapujade P. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiology 2009, 155:1340-1350.
-
(2009)
Microbiology
, vol.155
, pp. 1340-1350
-
-
van den Brink, J.1
Akeroyd, M.2
van der Hoeven, R.3
Pronk, J.T.4
de Winde, J.H.5
Daran-Lapujade, P.6
-
8
-
-
1242339579
-
Dissecting regulatory networks by means of two-dimensional gel electrophoresis: application to the study of the diauxic shift in the yeast Saccharomyces cerevisiae
-
Haurie V, Sagliocco F, Boucherie H. Dissecting regulatory networks by means of two-dimensional gel electrophoresis: application to the study of the diauxic shift in the yeast Saccharomyces cerevisiae. Proteomics 2004, 4:364-373.
-
(2004)
Proteomics
, vol.4
, pp. 364-373
-
-
Haurie, V.1
Sagliocco, F.2
Boucherie, H.3
-
9
-
-
33745459776
-
Proteome analysis of yeast response to various nutrient limitations
-
Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn MM, Pronk JT, Slijper M, Heck AJ. Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2006, 2:2006 0026.
-
(2006)
Mol Syst Biol
, vol.2
-
-
Kolkman, A.1
Daran-Lapujade, P.2
Fullaondo, A.3
Olsthoorn, M.M.4
Pronk, J.T.5
Slijper, M.6
Heck, A.J.7
-
10
-
-
77952554160
-
Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae
-
Francesca G, Francesca M, Tania G, Marina B, Maurizio S, Alessandra M. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae. Biochim Biophys Acta 2010, 1804:1516-1525.
-
(2010)
Biochim Biophys Acta
, vol.1804
, pp. 1516-1525
-
-
Francesca, G.1
Francesca, M.2
Tania, G.3
Marina, B.4
Maurizio, S.5
Alessandra, M.6
-
11
-
-
36448932359
-
Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes
-
de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 2007, 153:3864-3878.
-
(2007)
Microbiology
, vol.153
, pp. 3864-3878
-
-
de Groot, M.J.1
Daran-Lapujade, P.2
van Breukelen, B.3
Knijnenburg, T.A.4
de Hulster, E.A.5
Reinders, M.J.6
Pronk, J.T.7
Heck, A.J.8
Slijper, M.9
-
12
-
-
38649098761
-
Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods
-
Usaite R, Wohlschlegel J, Venable JD, Park SK, Nielsen J, Olsson L, Yates Iii JR. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods. J Proteome Res 2008, 7:266-275.
-
(2008)
J Proteome Res
, vol.7
, pp. 266-275
-
-
Usaite, R.1
Wohlschlegel, J.2
Venable, J.D.3
Park, S.K.4
Nielsen, J.5
Olsson, L.6
Yates Iii, J.R.7
-
13
-
-
79551600149
-
Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics
-
Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, Sauer U, Aebersold R. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol Syst Biol 2011, 7:464.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 464
-
-
Costenoble, R.1
Picotti, P.2
Reiter, L.3
Stallmach, R.4
Heinemann, M.5
Sauer, U.6
Aebersold, R.7
-
14
-
-
14644395537
-
Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol
-
Kolkman A, Olsthoorn MM, Heeremans CE, Heck AJ, Slijper M. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 2005, 4:1-11.
-
(2005)
Mol Cell Proteomics
, vol.4
, pp. 1-11
-
-
Kolkman, A.1
Olsthoorn, M.M.2
Heeremans, C.E.3
Heck, A.J.4
Slijper, M.5
-
15
-
-
33845447287
-
Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions
-
Pham TK, Chong PK, Gan CS, Wright PC. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J Proteome Res 2006, 5:3411-3419.
-
(2006)
J Proteome Res
, vol.5
, pp. 3411-3419
-
-
Pham, T.K.1
Chong, P.K.2
Gan, C.S.3
Wright, P.C.4
-
16
-
-
0031983739
-
Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions
-
Klein CJ, Olsson L, Nielsen J. Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. Microbiology 1998, 144(Pt 1):13-24.
-
(1998)
Microbiology
, vol.144
, Issue.PART 1
, pp. 13-24
-
-
Klein, C.J.1
Olsson, L.2
Nielsen, J.3
-
17
-
-
0038349351
-
Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs
-
Yin Z, Wilson S, Hauser NC, Tournu H, Hoheisel JD, Brown AJ. Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol Microbiol 2003, 48:713-724.
-
(2003)
Mol Microbiol
, vol.48
, pp. 713-724
-
-
Yin, Z.1
Wilson, S.2
Hauser, N.C.3
Tournu, H.4
Hoheisel, J.D.5
Brown, A.J.6
-
18
-
-
0033229970
-
The economics of ribosome biosynthesis in yeast
-
Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999, 24:437-440.
-
(1999)
Trends Biochem Sci
, vol.24
, pp. 437-440
-
-
Warner, J.R.1
-
19
-
-
0033367325
-
Ribosome synthesis in Saccharomyces cerevisiae
-
Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999, 33:261-311.
-
(1999)
Annu Rev Genet
, vol.33
, pp. 261-311
-
-
Venema, J.1
Tollervey, D.2
-
21
-
-
0029037655
-
Transcription activation of yeast ribosomal protein genes requires additional elements apart from binding sites for Abf1p or Rap1p
-
Goncalves PM, Griffioen G, Minnee R, Bosma M, Kraakman LS, Mager WH, Planta RJ. Transcription activation of yeast ribosomal protein genes requires additional elements apart from binding sites for Abf1p or Rap1p. Nucleic Acids Res 1995, 23:1475-1480.
-
(1995)
Nucleic Acids Res
, vol.23
, pp. 1475-1480
-
-
Goncalves, P.M.1
Griffioen, G.2
Minnee, R.3
Bosma, M.4
Kraakman, L.S.5
Mager, W.H.6
Planta, R.J.7
-
22
-
-
0038538325
-
Glucose regulation of Saccharomyces cerevisiae cell cycle genes
-
Newcomb LL, Diderich JA, Slattery MG, Heideman W. Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryot Cell 2003, 2:143-149.
-
(2003)
Eukaryot Cell
, vol.2
, pp. 143-149
-
-
Newcomb, L.L.1
Diderich, J.A.2
Slattery, M.G.3
Heideman, W.4
-
23
-
-
0030824205
-
Signalling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast
-
Goncalves PM, Griffioen G, Bebelman JP, Planta RJ. Signalling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast. Mol Microbiol 1997, 25:483-493.
-
(1997)
Mol Microbiol
, vol.25
, pp. 483-493
-
-
Goncalves, P.M.1
Griffioen, G.2
Bebelman, J.P.3
Planta, R.J.4
-
24
-
-
0033982031
-
Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae
-
de Groot E, Bebelman JP, Mager WH, Planta RJ. Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae. Microbiology 2000, 146(Pt 2):367-375.
-
(2000)
Microbiology
, vol.146
, Issue.PART 2
, pp. 367-375
-
-
de Groot, E.1
Bebelman, J.P.2
Mager, W.H.3
Planta, R.J.4
-
25
-
-
0028102947
-
Nutritional upshift response of ribosomal protein gene transcription in Saccharomyces cerevisiae
-
Griffioen G, Mager WH, Planta RJ. Nutritional upshift response of ribosomal protein gene transcription in Saccharomyces cerevisiae. FEMS Microbiol Lett 1994, 123:137-144.
-
(1994)
FEMS Microbiol Lett
, vol.123
, pp. 137-144
-
-
Griffioen, G.1
Mager, W.H.2
Planta, R.J.3
-
26
-
-
0027223194
-
The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae
-
Sierkstra LN, Sillje HH, Verbakel JM, Verrips CT. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Eur J Biochem 1993, 214:121-127.
-
(1993)
Eur J Biochem
, vol.214
, pp. 121-127
-
-
Sierkstra, L.N.1
Sillje, H.H.2
Verbakel, J.M.3
Verrips, C.T.4
-
27
-
-
0025938192
-
Yeast glycolytic mRNAs are differentially regulated
-
Moore PA, Sagliocco FA, Wood RM, Brown AJ. Yeast glycolytic mRNAs are differentially regulated. Mol Cell Biol 1991, 11:5330-5337.
-
(1991)
Mol Cell Biol
, vol.11
, pp. 5330-5337
-
-
Moore, P.A.1
Sagliocco, F.A.2
Wood, R.M.3
Brown, A.J.4
-
28
-
-
0027326838
-
Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae
-
Sierkstra LN, Nouwen NP, Verbakel JM, Verrips CT. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae. Yeast 1993, 9:787-795.
-
(1993)
Yeast
, vol.9
, pp. 787-795
-
-
Sierkstra, L.N.1
Nouwen, N.P.2
Verbakel, J.M.3
Verrips, C.T.4
-
29
-
-
0024286760
-
Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae
-
Beullens M, Mbonyi K, Geerts L, Gladines D, Detremerie K, Jans AW, Thevelein JM. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 1988, 172:227-231.
-
(1988)
Eur J Biochem
, vol.172
, pp. 227-231
-
-
Beullens, M.1
Mbonyi, K.2
Geerts, L.3
Gladines, D.4
Detremerie, K.5
Jans, A.W.6
Thevelein, J.M.7
-
30
-
-
0025276123
-
A glucose-repressible gene encodes acetyl-CoA hydrolase from Saccharomyces cerevisiae
-
Lee FJ, Lin LW, Smith JA. A glucose-repressible gene encodes acetyl-CoA hydrolase from Saccharomyces cerevisiae. J Biol Chem 1990, 265:7413-7418.
-
(1990)
J Biol Chem
, vol.265
, pp. 7413-7418
-
-
Lee, F.J.1
Lin, L.W.2
Smith, J.A.3
-
31
-
-
11244254935
-
Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae
-
Elbing K, Stahlberg A, Hohmann S, Gustafsson L. Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae. Eur J Biochem 2004, 271:4855-4864.
-
(2004)
Eur J Biochem
, vol.271
, pp. 4855-4864
-
-
Elbing, K.1
Stahlberg, A.2
Hohmann, S.3
Gustafsson, L.4
-
32
-
-
0022751204
-
Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2
-
Cohen R, Holland JP, Yokoi T, Holland MJ. Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol Cell Biol 1986, 6:2287-2297.
-
(1986)
Mol Cell Biol
, vol.6
, pp. 2287-2297
-
-
Cohen, R.1
Holland, J.P.2
Yokoi, T.3
Holland, M.J.4
-
33
-
-
1942505365
-
Overexpression of HAP4 in glucose-derepressed yeast cells reveals respiratory control of glucose-regulated genes
-
Lascaris R, Piwowarski J, van der Spek H, Teixeira de Mattos J, Grivell L, Blom J. Overexpression of HAP4 in glucose-derepressed yeast cells reveals respiratory control of glucose-regulated genes. Microbiology 2004, 150:929-934.
-
(2004)
Microbiology
, vol.150
, pp. 929-934
-
-
Lascaris, R.1
Piwowarski, J.2
van der Spek, H.3
Teixeira de Mattos, J.4
Grivell, L.5
Blom, J.6
-
34
-
-
0026524634
-
Carbon catabolite repression in yeast
-
Gancedo JM. Carbon catabolite repression in yeast. Eur J Biochem 1992, 206:297-313.
-
(1992)
Eur J Biochem
, vol.206
, pp. 297-313
-
-
Gancedo, J.M.1
-
35
-
-
0026748455
-
Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor
-
Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK. Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor. J Bacteriol 1992, 174:4183-4188.
-
(1992)
J Bacteriol
, vol.174
, pp. 4183-4188
-
-
Hohmann, S.1
Huse, K.2
Valentin, E.3
Mbonyi, K.4
Thevelein, J.M.5
Zimmermann, F.K.6
-
37
-
-
34547914089
-
Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways
-
Belinchon MM, Gancedo JM. Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways. FEMS Yeast Res 2007, 7:808-818.
-
(2007)
FEMS Yeast Res
, vol.7
, pp. 808-818
-
-
Belinchon, M.M.1
Gancedo, J.M.2
-
38
-
-
0032213751
-
Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae
-
Scheffler IE, de la Cruz BJ, Prieto S. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 1998, 30:1175-1193.
-
(1998)
Int J Biochem Cell Biol
, vol.30
, pp. 1175-1193
-
-
Scheffler, I.E.1
de la Cruz, B.J.2
Prieto, S.3
-
39
-
-
0033965777
-
Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations
-
Yin Z, Hatton L, Brown AJ. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Mol Microbiol 2000, 35:553-565.
-
(2000)
Mol Microbiol
, vol.35
, pp. 553-565
-
-
Yin, Z.1
Hatton, L.2
Brown, A.J.3
-
40
-
-
0038709277
-
Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways
-
Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD, Thumm M, Wolf DH. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 2003, 14:1652-1663.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 1652-1663
-
-
Regelmann, J.1
Schule, T.2
Josupeit, F.S.3
Horak, J.4
Rose, M.5
Entian, K.D.6
Thumm, M.7
Wolf, D.H.8
-
41
-
-
0018602266
-
Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae
-
Gancedo JM, Gancedo C. Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae. Eur J Biochem 1979, 101:455-460.
-
(1979)
Eur J Biochem
, vol.101
, pp. 455-460
-
-
Gancedo, J.M.1
Gancedo, C.2
-
42
-
-
0020776397
-
Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae
-
Entian KD, Droll L, Mecke D. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Arch Microbiol 1983, 134:187-192.
-
(1983)
Arch Microbiol
, vol.134
, pp. 187-192
-
-
Entian, K.D.1
Droll, L.2
Mecke, D.3
-
43
-
-
0021763691
-
Regulation of enzymes and isoenzymes of carbohydrate metabolism in the yeast Saccharomyces cerevisiae
-
Entian KD, Frohlich KU, Mecke D. Regulation of enzymes and isoenzymes of carbohydrate metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1984, 799:181-186.
-
(1984)
Biochim Biophys Acta
, vol.799
, pp. 181-186
-
-
Entian, K.D.1
Frohlich, K.U.2
Mecke, D.3
-
44
-
-
0024832940
-
Proteolytic catabolite inactivation in Saccharomyces cerevisiae
-
Holzer H. Proteolytic catabolite inactivation in Saccharomyces cerevisiae. Revis Biol Celular 1989, 21:305-319.
-
(1989)
Revis Biol Celular
, vol.21
, pp. 305-319
-
-
Holzer, H.1
-
45
-
-
67650614320
-
A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation
-
Brown CR, Chiang HL. A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2009, 2:177-183.
-
(2009)
Commun Integr Biol
, vol.2
, pp. 177-183
-
-
Brown, C.R.1
Chiang, H.L.2
-
46
-
-
0035930607
-
Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles
-
Brown CR, Cui DY, Hung GG, Chiang HL. Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles. J Biol Chem 2001, 276:48017-48026.
-
(2001)
J Biol Chem
, vol.276
, pp. 48017-48026
-
-
Brown, C.R.1
Cui, D.Y.2
Hung, G.G.3
Chiang, H.L.4
-
47
-
-
74049120137
-
The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation
-
Brown CR, Dunton D, Chiang HL. The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation. J Biol Chem 2010, 285:1516-1528.
-
(2010)
J Biol Chem
, vol.285
, pp. 1516-1528
-
-
Brown, C.R.1
Dunton, D.2
Chiang, H.L.3
-
48
-
-
77954940501
-
The TOR complex 1 is distributed in endosomes and in retrograde vesicles that form from the vacuole membrane and plays an important role in the vacuole import and degradation pathway
-
Brown CR, Hung GC, Dunton D, Chiang HL. The TOR complex 1 is distributed in endosomes and in retrograde vesicles that form from the vacuole membrane and plays an important role in the vacuole import and degradation pathway. J Biol Chem 2010, 285:23359-23370.
-
(2010)
J Biol Chem
, vol.285
, pp. 23359-23370
-
-
Brown, C.R.1
Hung, G.C.2
Dunton, D.3
Chiang, H.L.4
-
49
-
-
0343962235
-
The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles
-
Brown CR, McCann JA, Chiang HL. The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. J Cell Biol 2000, 150:65-76.
-
(2000)
J Cell Biol
, vol.150
, pp. 65-76
-
-
Brown, C.R.1
McCann, J.A.2
Chiang, H.L.3
-
50
-
-
0036473043
-
Vid22p, a novel plasma membrane protein, is required for the fructose-1,6-bisphosphatase degradation pathway
-
Brown CR, McCann JA, Hung GG, Elco CP, Chiang HL. Vid22p, a novel plasma membrane protein, is required for the fructose-1,6-bisphosphatase degradation pathway. J Cell Sci 2002, 115:655-666.
-
(2002)
J Cell Sci
, vol.115
, pp. 655-666
-
-
Brown, C.R.1
McCann, J.A.2
Hung, G.G.3
Elco, C.P.4
Chiang, H.L.5
-
51
-
-
54449096709
-
The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation
-
Brown CR, Wolfe AB, Cui D, Chiang HL. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008, 283:26116-26127.
-
(2008)
J Biol Chem
, vol.283
, pp. 26116-26127
-
-
Brown, C.R.1
Wolfe, A.B.2
Cui, D.3
Chiang, H.L.4
-
52
-
-
10344259661
-
Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events
-
Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004, 279:49138-49150.
-
(2004)
J Biol Chem
, vol.279
, pp. 49138-49150
-
-
Hung, G.C.1
Brown, C.R.2
Wolfe, A.B.3
Liu, J.4
Chiang, H.L.5
-
53
-
-
0001363302
-
Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources
-
Polakis ES, Bartley W. Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J 1965, 97:284-297.
-
(1965)
Biochem J
, vol.97
, pp. 284-297
-
-
Polakis, E.S.1
Bartley, W.2
-
54
-
-
0001363303
-
Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources
-
Polakis ES, Bartley W, Meek GA. Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem J 1965, 97:298-302.
-
(1965)
Biochem J
, vol.97
, pp. 298-302
-
-
Polakis, E.S.1
Bartley, W.2
Meek, G.A.3
-
55
-
-
0017608786
-
The synthesis of yeast matrix mitochondrial enzymes is regulated by different levels of mitochondrial function
-
Satrustegui J, Machado A. The synthesis of yeast matrix mitochondrial enzymes is regulated by different levels of mitochondrial function. Arch Biochem Biophys 1977, 184:355-363.
-
(1977)
Arch Biochem Biophys
, vol.184
, pp. 355-363
-
-
Satrustegui, J.1
Machado, A.2
-
56
-
-
0021115563
-
In vivo glucose activation of the yeast plasma membrane ATPase
-
Serrano R. In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 1983, 156:11-14.
-
(1983)
FEBS Lett
, vol.156
, pp. 11-14
-
-
Serrano, R.1
-
57
-
-
0026631239
-
Glucose-induced activation of plasma membrane H(+)-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis
-
dos Passos JB, Vanhalewyn M, Brandao RL, Castro IM, Nicoli JR, Thevelein JM. Glucose-induced activation of plasma membrane H(+)-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochim Biophys Acta 1992, 1136:57-67.
-
(1992)
Biochim Biophys Acta
, vol.1136
, pp. 57-67
-
-
dos Passos, J.B.1
Vanhalewyn, M.2
Brandao, R.L.3
Castro, I.M.4
Nicoli, J.R.5
Thevelein, J.M.6
-
58
-
-
0026768807
-
Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum
-
Brandao RL, Castro IM, Passos JB, Nicoli JR, Thevelein JM. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum. J Gen Microbiol 1992, 138(Pt 8):1579-1586.
-
(1992)
J Gen Microbiol
, vol.138
, Issue.PART 8
, pp. 1579-1586
-
-
Brandao, R.L.1
Castro, I.M.2
Passos, J.B.3
Nicoli, J.R.4
Thevelein, J.M.5
-
59
-
-
1042266670
-
The yeast mitochondrial proteome, a study of fermentative and respiratory growth
-
Ohlmeier S, Kastaniotis AJ, Hiltunen JK, Bergmann U. The yeast mitochondrial proteome, a study of fermentative and respiratory growth. J Biol Chem 2004, 279:3956-3979.
-
(2004)
J Biol Chem
, vol.279
, pp. 3956-3979
-
-
Ohlmeier, S.1
Kastaniotis, A.J.2
Hiltunen, J.K.3
Bergmann, U.4
-
60
-
-
0025804582
-
Regulated import and degradation of a cytosolic protein in the yeast vacuole
-
Chiang HL, Schekman R. Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 1991, 350:313-318.
-
(1991)
Nature
, vol.350
, pp. 313-318
-
-
Chiang, H.L.1
Schekman, R.2
-
61
-
-
0029844569
-
Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae
-
Hoffman M, Chiang HL. Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 1996, 143:1555-1566.
-
(1996)
Genetics
, vol.143
, pp. 1555-1566
-
-
Hoffman, M.1
Chiang, H.L.2
-
62
-
-
0020201154
-
Inactivation and phosphorylation of yeast fructose 1,6-bisphosphatase
-
Gancedo JM, Mazon MJ, Gancedo C. Inactivation and phosphorylation of yeast fructose 1,6-bisphosphatase. Biochem Soc Trans 1982, 10:326-327.
-
(1982)
Biochem Soc Trans
, vol.10
, pp. 326-327
-
-
Gancedo, J.M.1
Mazon, M.J.2
Gancedo, C.3
-
63
-
-
0023356219
-
Glucose-induced degradation of yeast fructose-1,6-bisphosphatase requires additional triggering events besides protein phosphorylation
-
Lamponi S, Galassi C, Tortora P, Guerritore A. Glucose-induced degradation of yeast fructose-1,6-bisphosphatase requires additional triggering events besides protein phosphorylation. FEBS Lett 1987, 216:265-269.
-
(1987)
FEBS Lett
, vol.216
, pp. 265-269
-
-
Lamponi, S.1
Galassi, C.2
Tortora, P.3
Guerritore, A.4
-
64
-
-
0020478550
-
Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme
-
Mazon MJ, Gancedo JM, Gancedo C. Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme. J Biol Chem 1982, 257:1128-1130.
-
(1982)
J Biol Chem
, vol.257
, pp. 1128-1130
-
-
Mazon, M.J.1
Gancedo, J.M.2
Gancedo, C.3
-
65
-
-
0022395239
-
Phosphorylation and inactivation of yeast fructose-1,6-bisphosphatase by cyclic AMP-dependent protein kinase from yeast
-
Pohlig G, Holzer H. Phosphorylation and inactivation of yeast fructose-1,6-bisphosphatase by cyclic AMP-dependent protein kinase from yeast. J Biol Chem 1985, 260:13818-13823.
-
(1985)
J Biol Chem
, vol.260
, pp. 13818-13823
-
-
Pohlig, G.1
Holzer, H.2
-
66
-
-
0023664652
-
Phosphorylation in vivo of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase at the cyclic AMP-dependent site
-
Rittenhouse J, Moberly L, Marcus F. Phosphorylation in vivo of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase at the cyclic AMP-dependent site. J Biol Chem 1987, 262:10114-10119.
-
(1987)
J Biol Chem
, vol.262
, pp. 10114-10119
-
-
Rittenhouse, J.1
Moberly, L.2
Marcus, F.3
-
67
-
-
0023106730
-
Anomeric specificity of glucose effect on cAMP, fructose 1,6-bisphosphatase, and trehalase in yeast
-
Toyoda Y, Fujii H, Miwa I, Okuda J, Sy J. Anomeric specificity of glucose effect on cAMP, fructose 1,6-bisphosphatase, and trehalase in yeast. Biochem Biophys Res Commun 1987, 143:212-217.
-
(1987)
Biochem Biophys Res Commun
, vol.143
, pp. 212-217
-
-
Toyoda, Y.1
Fujii, H.2
Miwa, I.3
Okuda, J.4
Sy, J.5
-
68
-
-
0032404121
-
Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway
-
Jiang Y, Davis C, Broach JR. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 1998, 17:6942-6951.
-
(1998)
EMBO J
, vol.17
, pp. 6942-6951
-
-
Jiang, Y.1
Davis, C.2
Broach, J.R.3
-
69
-
-
58149380181
-
The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation
-
Pham TK, Wright PC. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J Proteome Res 2008, 7:4766-4774.
-
(2008)
J Proteome Res
, vol.7
, pp. 4766-4774
-
-
Pham, T.K.1
Wright, P.C.2
-
70
-
-
77955440435
-
Valproate and bone loss: iTRAQ proteomics show that valproate reduces collagens and osteonectin in SMA cells
-
Fuller HR, Man NT, le Lam T, Shamanin VA, Androphy EJ, Morris GE. Valproate and bone loss: iTRAQ proteomics show that valproate reduces collagens and osteonectin in SMA cells. J Proteome Res 2010, 9:4228-4233.
-
(2010)
J Proteome Res
, vol.9
, pp. 4228-4233
-
-
Fuller, H.R.1
Man, N.T.2
le Lam, T.3
Shamanin, V.A.4
Androphy, E.J.5
Morris, G.E.6
-
71
-
-
77950544169
-
ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective
-
Zhao Z, Stanley BA, Zhang W, Assmann SM. ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 2010, 9:1637-1647.
-
(2010)
J Proteome Res
, vol.9
, pp. 1637-1647
-
-
Zhao, Z.1
Stanley, B.A.2
Zhang, W.3
Assmann, S.M.4
-
72
-
-
19944432197
-
Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents
-
Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3:1154-1169.
-
(2004)
Mol Cell Proteomics
, vol.3
, pp. 1154-1169
-
-
Ross, P.L.1
Huang, Y.N.2
Marchese, J.N.3
Williamson, B.4
Parker, K.5
Hattan, S.6
Khainovski, N.7
Pillai, S.8
Dey, S.9
Daniels, S.10
-
74
-
-
0032579887
-
The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae
-
Planta RJ, Mager WH. The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 1998, 14:471-477.
-
(1998)
Yeast
, vol.14
, pp. 471-477
-
-
Planta, R.J.1
Mager, W.H.2
-
75
-
-
0032518217
-
Three-dimensional structure of the yeast ribosome
-
Verschoor A, Warner JR, Srivastava S, Grassucci RA, Frank J. Three-dimensional structure of the yeast ribosome. Nucleic Acids Res 1998, 26:655-661.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 655-661
-
-
Verschoor, A.1
Warner, J.R.2
Srivastava, S.3
Grassucci, R.A.4
Frank, J.5
-
76
-
-
0021767924
-
Identification of two genes coding for the translation elongation factor EF-1 alpha of S. cerevisiae
-
Schirmaier F, Philippsen P. Identification of two genes coding for the translation elongation factor EF-1 alpha of S. cerevisiae. EMBO J 1984, 3:3311-3315.
-
(1984)
EMBO J
, vol.3
, pp. 3311-3315
-
-
Schirmaier, F.1
Philippsen, P.2
-
77
-
-
0028217902
-
Multiple genes encode the translation elongation factor EF-1 gamma in Saccharomyces cerevisiae
-
Kinzy TG, Ripmaster TL, Woolford JL. Multiple genes encode the translation elongation factor EF-1 gamma in Saccharomyces cerevisiae. Nucleic Acids Res 1994, 22:2703-2707.
-
(1994)
Nucleic Acids Res
, vol.22
, pp. 2703-2707
-
-
Kinzy, T.G.1
Ripmaster, T.L.2
Woolford, J.L.3
-
78
-
-
0346366826
-
Mapping eIF5A binding sites for Dys1 and Lia1: in vivo evidence for regulation of eIF5A hypusination
-
Thompson GM, Cano VS, Valentini SR. Mapping eIF5A binding sites for Dys1 and Lia1: in vivo evidence for regulation of eIF5A hypusination. FEBS Lett 2003, 555:464-468.
-
(2003)
FEBS Lett
, vol.555
, pp. 464-468
-
-
Thompson, G.M.1
Cano, V.S.2
Valentini, S.R.3
-
79
-
-
33646480475
-
Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H + -ATPase
-
Eraso P, Mazon MJ, Portillo F. Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H + -ATPase. Biochim Biophys Acta 2006, 1758:164-170.
-
(2006)
Biochim Biophys Acta
, vol.1758
, pp. 164-170
-
-
Eraso, P.1
Mazon, M.J.2
Portillo, F.3
-
80
-
-
0028342457
-
Transcriptional control of yeast plasma membrane H(+)-ATPase by glucose. Cloning and characterization of a new gene involved in this regulation
-
Garcia-Arranz M, Maldonado AM, Mazon MJ, Portillo F. Transcriptional control of yeast plasma membrane H(+)-ATPase by glucose. Cloning and characterization of a new gene involved in this regulation. J Biol Chem 1994, 269:18076-18082.
-
(1994)
J Biol Chem
, vol.269
, pp. 18076-18082
-
-
Garcia-Arranz, M.1
Maldonado, A.M.2
Mazon, M.J.3
Portillo, F.4
-
81
-
-
0030935908
-
Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase
-
Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 1997, 2:12-24.
-
(1997)
Cell Stress Chaperones
, vol.2
, pp. 12-24
-
-
Piper, P.W.1
Ortiz-Calderon, C.2
Holyoak, C.3
Coote, P.4
Cole, M.5
-
82
-
-
0014690958
-
Assembly of the mitochondrial membrane system. II. Synthesis of the mitochondrial adenosine triphosphatase. F1
-
Tzagoloff A. Assembly of the mitochondrial membrane system. II. Synthesis of the mitochondrial adenosine triphosphatase. F1. J Biol Chem 1969, 244:5027-5033.
-
(1969)
J Biol Chem
, vol.244
, pp. 5027-5033
-
-
Tzagoloff, A.1
-
83
-
-
0035339662
-
The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae
-
Rodriguez A, De La Cera T, Herrero P, Moreno F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 2001, 355:625-631.
-
(2001)
Biochem J
, vol.355
, pp. 625-631
-
-
Rodriguez, A.1
De La Cera, T.2
Herrero, P.3
Moreno, F.4
-
84
-
-
2142816910
-
Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae
-
Bisson LF, Fraenkel DG. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1983, 80:1730-1734.
-
(1983)
Proc Natl Acad Sci U S A
, vol.80
, pp. 1730-1734
-
-
Bisson, L.F.1
Fraenkel, D.G.2
-
85
-
-
0022599142
-
Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae
-
Aguilera A, Zimmermann FK. Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae. Mol Gen Genet 1986, 202:83-89.
-
(1986)
Mol Gen Genet
, vol.202
, pp. 83-89
-
-
Aguilera, A.1
Zimmermann, F.K.2
-
86
-
-
0028138630
-
The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae
-
Dey NB, Bounelis P, Fritz TA, Bedwell DM, Marchase RB. The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae. J Biol Chem 1994, 269:27143-27148.
-
(1994)
J Biol Chem
, vol.269
, pp. 27143-27148
-
-
Dey, N.B.1
Bounelis, P.2
Fritz, T.A.3
Bedwell, D.M.4
Marchase, R.B.5
-
87
-
-
0029017119
-
The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae
-
Fu L, Bounelis P, Dey N, Browne BL, Marchase RB, Bedwell DM. The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae. J Bacteriol 1995, 177:3087-3094.
-
(1995)
J Bacteriol
, vol.177
, pp. 3087-3094
-
-
Fu, L.1
Bounelis, P.2
Dey, N.3
Browne, B.L.4
Marchase, R.B.5
Bedwell, D.M.6
-
88
-
-
0026522337
-
The ICL1 gene from Saccharomyces cerevisiae
-
Fernandez E, Moreno F, Rodicio R. The ICL1 gene from Saccharomyces cerevisiae. Eur J Biochem 1992, 204:983-990.
-
(1992)
Eur J Biochem
, vol.204
, pp. 983-990
-
-
Fernandez, E.1
Moreno, F.2
Rodicio, R.3
-
89
-
-
0026469802
-
Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae
-
Hartig A, Simon MM, Schuster T, Daugherty JR, Yoo HS, Cooper TG. Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic Acids Res 1992, 20:5677-5686.
-
(1992)
Nucleic Acids Res
, vol.20
, pp. 5677-5686
-
-
Hartig, A.1
Simon, M.M.2
Schuster, T.3
Daugherty, J.R.4
Yoo, H.S.5
Cooper, T.G.6
-
90
-
-
0021100145
-
Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex. Isolation of ATP2 coding the F1-ATPase beta subunit
-
Saltzgaber-Muller J, Kunapuli SP, Douglas MG. Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex. Isolation of ATP2 coding the F1-ATPase beta subunit. J Biol Chem 1983, 258:11465-11470.
-
(1983)
J Biol Chem
, vol.258
, pp. 11465-11470
-
-
Saltzgaber-Muller, J.1
Kunapuli, S.P.2
Douglas, M.G.3
-
91
-
-
0031008228
-
The ATP synthase-a splendid molecular machine
-
Boyer PD. The ATP synthase-a splendid molecular machine. Annu Rev Biochem 1997, 66:717-749.
-
(1997)
Annu Rev Biochem
, vol.66
, pp. 717-749
-
-
Boyer, P.D.1
-
92
-
-
56349152186
-
Assembly of F0 in Saccharomyces cerevisiae
-
Rak M, Zeng X, Briere JJ, Tzagoloff A. Assembly of F0 in Saccharomyces cerevisiae. Biochim Biophys Acta 2009, 1793:108-116.
-
(2009)
Biochim Biophys Acta
, vol.1793
, pp. 108-116
-
-
Rak, M.1
Zeng, X.2
Briere, J.J.3
Tzagoloff, A.4
-
93
-
-
0025635981
-
Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids
-
Stone RL, Matarese V, Magee BB, Magee PT, Bernlohr DA. Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids. Gene 1990, 96:171-176.
-
(1990)
Gene
, vol.96
, pp. 171-176
-
-
Stone, R.L.1
Matarese, V.2
Magee, B.B.3
Magee, P.T.4
Bernlohr, D.A.5
-
94
-
-
0025071981
-
HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function
-
Praekelt UM, Meacock PA. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 1990, 223:97-106.
-
(1990)
Mol Gen Genet
, vol.223
, pp. 97-106
-
-
Praekelt, U.M.1
Meacock, P.A.2
-
95
-
-
0026530483
-
The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate
-
Bentley NJ, Fitch IT, Tuite MF. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast 1992, 8:95-106.
-
(1992)
Yeast
, vol.8
, pp. 95-106
-
-
Bentley, N.J.1
Fitch, I.T.2
Tuite, M.F.3
-
96
-
-
0022595650
-
Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast
-
Heinisch J. Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol Gen Genet 1986, 202:75-82.
-
(1986)
Mol Gen Genet
, vol.202
, pp. 75-82
-
-
Heinisch, J.1
-
97
-
-
0031597366
-
Reversible association between the V1 and V0 domains of yeast vacuolar H + -ATPase is an unconventional glucose-induced effect
-
Parra KJ, Kane PM. Reversible association between the V1 and V0 domains of yeast vacuolar H + -ATPase is an unconventional glucose-induced effect. Mol Cell Biol 1998, 18:7064-7074.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 7064-7074
-
-
Parra, K.J.1
Kane, P.M.2
-
98
-
-
61349192268
-
The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast
-
Bond S, Forgac M. The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. J Biol Chem 2008, 283:36513-36521.
-
(2008)
J Biol Chem
, vol.283
, pp. 36513-36521
-
-
Bond, S.1
Forgac, M.2
-
99
-
-
77956664703
-
Protein phosphorylation in mitochondria -a study on fermentative and respiratory growth of Saccharomyces cerevisiae
-
Ohlmeier S, Hiltunen JK, Bergmann U. Protein phosphorylation in mitochondria -a study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 2010, 31:2869-2881.
-
(2010)
Electrophoresis
, vol.31
, pp. 2869-2881
-
-
Ohlmeier, S.1
Hiltunen, J.K.2
Bergmann, U.3
-
100
-
-
34848889259
-
The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra
-
Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 2007, 6:1638-1655.
-
(2007)
Mol Cell Proteomics
, vol.6
, pp. 1638-1655
-
-
Shilov, I.V.1
Seymour, S.L.2
Patel, A.A.3
Loboda, A.4
Tang, W.H.5
Keating, S.P.6
Hunter, C.L.7
Nuwaysir, L.M.8
Schaeffer, D.A.9
-
101
-
-
51249118496
-
Interferences and contaminants encountered in modern mass spectrometry
-
Keller BO, Sui J, Young AB, Whittal RM. Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 2008, 627:71-81.
-
(2008)
Anal Chim Acta
, vol.627
, pp. 71-81
-
-
Keller, B.O.1
Sui, J.2
Young, A.B.3
Whittal, R.M.4
-
102
-
-
41749124531
-
Recent development of multi-dimensional chromatography strategies in proteome research
-
Tang J, Gao M, Deng C, Zhang X. Recent development of multi-dimensional chromatography strategies in proteome research. J Chromatogr B Analyt Technol Biomed Life Sci 2008, 866:123-132.
-
(2008)
J Chromatogr B Analyt Technol Biomed Life Sci
, vol.866
, pp. 123-132
-
-
Tang, J.1
Gao, M.2
Deng, C.3
Zhang, X.4
-
103
-
-
24044513966
-
Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations
-
Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2005, 2:667-675.
-
(2005)
Nat Methods
, vol.2
, pp. 667-675
-
-
Elias, J.E.1
Haas, W.2
Faherty, B.K.3
Gygi, S.P.4
-
104
-
-
55249121202
-
Nonlinear fitting method for determining local false discovery rates from decoy database searches
-
Tang WH, Shilov IV, Seymour SL. Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 2008, 7:3661-3667.
-
(2008)
J Proteome Res
, vol.7
, pp. 3661-3667
-
-
Tang, W.H.1
Shilov, I.V.2
Seymour, S.L.3
-
105
-
-
56449107474
-
BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams
-
Hulsen T, de Vlieg J, Alkema W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 2008, 9:488.
-
(2008)
BMC Genomics
, vol.9
, pp. 488
-
-
Hulsen, T.1
de Vlieg, J.2
Alkema, W.3
|