-
1
-
-
33847066706
-
Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy
-
Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 2007; 35:12-7.
-
(2007)
Biochem Soc Trans
, vol.35
, pp. 12-17
-
-
Goldberg, A.L.1
-
2
-
-
23944471680
-
The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle
-
Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 2005; 12:1191-7.
-
(2005)
Cell Death Differ
, vol.12
, pp. 1191-1197
-
-
Hershko, A.1
-
3
-
-
20444404618
-
Regulated protein degradation
-
Varshavsky A. Regulated protein degradation. Trends Biochem Sci 2005; 30:283-6.
-
(2005)
Trends Biochem Sci
, vol.30
, pp. 283-286
-
-
Varshavsky, A.1
-
4
-
-
34249864120
-
A proteasome for all occasions
-
Hanna J, Finley D. A proteasome for all occasions. FEBS Lett 2007; 581:2854-61.
-
(2007)
FEBS Lett
, vol.581
, pp. 2854-2861
-
-
Hanna, J.1
Finley, D.2
-
6
-
-
0021886379
-
Participation of lysosomes in basal proteolysis in perfused rat liver. Discrepancybetween leupeptin-induced lysosomal enlargement and inhibition of proteolysis
-
Henell F, Glaumann H. Participation of lysosomes in basal proteolysis in perfused rat liver. Discrepancybetween leupeptin-induced lysosomal enlargement and inhibition of proteolysis. Exp Cell Res 1985; 158:257-62.
-
(1985)
Exp Cell Res
, vol.158
, pp. 257-262
-
-
Henell, F.1
Glaumann, H.2
-
7
-
-
0017688771
-
Alterations of lysosomal size and density during rat liver perfusion. Suppression by insulin and amino acids
-
Neely AN, Cox JR, Fortney JA, Schworer CM, Mortimore GE. Alterations of lysosomal size and density during rat liver perfusion. Suppression by insulin and amino acids. J Biol Chem 1977; 252:6948-54.
-
(1977)
J Biol Chem
, vol.252
, pp. 6948-6954
-
-
Neely, A.N.1
Cox, J.R.2
Fortney, J.A.3
Schworer, C.M.4
Mortimore, G.E.5
-
8
-
-
0015881521
-
Proteolysis in homogenates of perfused rat liver: responses to insulin, glucagon and amino acids
-
Mortimore GE, Neely AN, Cox JR, Guinivan RA. Proteolysis in homogenates of perfused rat liver: responses to insulin, glucagon and amino acids. Biochem Biophys Res Commun 1973; 54:89-95.
-
(1973)
Biochem Biophys Res Commun
, vol.54
, pp. 89-95
-
-
Mortimore, G.E.1
Neely, A.N.2
Cox, J.R.3
Guinivan, R.A.4
-
9
-
-
0020510501
-
Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding
-
Mortimore GE, Hutson NJ, Surmacz CA. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA 1983; 80:2179-83.
-
(1983)
Proc Natl Acad Sci USA
, vol.80
, pp. 2179-2183
-
-
Mortimore, G.E.1
Hutson, N.J.2
Surmacz, C.A.3
-
10
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451:1069-75.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
11
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9:1102-9.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
12
-
-
34250864795
-
Protein turnover via autophagy: implications for metabolism
-
Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 7:19-40.
-
(2007)
Annu Rev Nutr
, vol.7
, pp. 19-40
-
-
Mizushima, N.1
Klionsky, D.J.2
-
13
-
-
51449085299
-
The role of autophagy in mammalian development: cell makeover rather than cell death
-
Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 2008; 15:344-57.
-
(2008)
Dev Cell
, vol.15
, pp. 344-357
-
-
Cecconi, F.1
Levine, B.2
-
15
-
-
0023891846
-
Peptide sequences that target proteins for enhanced degradation during serum withdrawal
-
Chiang HL, Dice JF. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 1988; 263:6797-805.
-
(1988)
J Biol Chem
, vol.263
, pp. 6797-6805
-
-
Chiang, H.L.1
Dice, J.F.2
-
16
-
-
0024975155
-
A role for a 70 kD heat shock protein in lysosomal degradation of intracellular proteins
-
Chiang H-L, Terlecky SR, Plant CP, Dice JF. A role for a 70 kD heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246:382-5.
-
(1989)
Science
, vol.246
, pp. 382-385
-
-
Chiang, H.-L.1
Terlecky, S.R.2
Plant, C.P.3
Dice, J.F.4
-
17
-
-
0026808914
-
Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by 73 kD heat shock cognate protein
-
Terlecky SR, Chiang HL, Oslon TS, Dice JF. Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by 73 kD heat shock cognate protein. J Biol Chem 1992; 267:9202-9.
-
(1992)
J Biol Chem
, vol.267
, pp. 9202-9209
-
-
Terlecky, S.R.1
Chiang, H.L.2
Oslon, T.S.3
Dice, J.F.4
-
18
-
-
0029837453
-
A receptor for the selective uptake and degradation of proteins by lysosomes
-
Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501-3.
-
(1996)
Science
, vol.273
, pp. 501-503
-
-
Cuervo, A.M.1
Dice, J.F.2
-
19
-
-
0030923854
-
An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation
-
Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 1997; 137:825-34.
-
(1997)
J Cell Biol
, vol.137
, pp. 825-834
-
-
Agarraberes, F.A.1
Terlecky, S.R.2
Dice, J.F.3
-
21
-
-
0442323561
-
Autophagy: in sickness and in health
-
Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004; 14:70-7.
-
(2004)
Trends Cell Biol
, vol.14
, pp. 70-77
-
-
Cuervo, A.M.1
-
22
-
-
34250822281
-
Chaperone-mediated autophagy
-
Dice JF. Chaperone-mediated autophagy. Autophagy 2007; 3:295-9.
-
(2007)
Autophagy
, vol.3
, pp. 295-299
-
-
Dice, J.F.1
-
23
-
-
6344275803
-
Activation of chaperone-mediated autophagy during oxidative stress
-
Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 2004; 15:4829-40.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 4829-4840
-
-
Kiffin, R.1
Christian, C.2
Knecht, E.3
Cuervo, A.M.4
-
24
-
-
0034613294
-
Age-related decline in chaperone-mediated autophagy
-
Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem 2000; 275:31505-13.
-
(2000)
J Biol Chem
, vol.275
, pp. 31505-31513
-
-
Cuervo, A.M.1
Dice, J.F.2
-
25
-
-
21844440290
-
Ketone bodies stimulate chaperone-mediated autophagy
-
Finn PF, Dice JF. Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem 2005; 280:25864-70.
-
(2005)
J Biol Chem
, vol.280
, pp. 25864-25870
-
-
Finn, P.F.1
Dice, J.F.2
-
26
-
-
0031911736
-
Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole
-
Bryant NJ, Stevens TH. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 1998; 62:230-47.
-
(1998)
Microbiol Mol Biol Rev
, vol.62
, pp. 230-247
-
-
Bryant, N.J.1
Stevens, T.H.2
-
27
-
-
0025871691
-
Three proteolytic systems in the yeast Saccharomyces cerevisiae
-
Jones EW. Three proteolytic systems in the yeast Saccharomyces cerevisiae. J Biol Chem 1991; 266:7963-6.
-
(1991)
J Biol Chem
, vol.266
, pp. 7963-7966
-
-
Jones, E.W.1
-
28
-
-
0025170681
-
The fungal vacuole: composition, function and biogenesis
-
Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function and biogenesis. Microbiol Rev 1990; 54:266-92.
-
(1990)
Microbiol Rev
, vol.54
, pp. 266-292
-
-
Klionsky, D.J.1
Herman, P.K.2
Emr, S.D.3
-
29
-
-
0027083496
-
Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants
-
Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 1992; 3:1389-402.
-
(1992)
Mol Biol Cell
, vol.3
, pp. 1389-1402
-
-
Raymond, C.K.1
Howald-Stevenson, I.2
Vater, C.A.3
Stevens, T.H.4
-
30
-
-
0023739386
-
Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases
-
Robinson JS, Klionsky DJ, Banta LM, Emr SD. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 1988; 8:4936-48.
-
(1988)
Mol Cell Biol
, vol.8
, pp. 4936-4948
-
-
Robinson, J.S.1
Klionsky, D.J.2
Banta, L.M.3
Emr, S.D.4
-
31
-
-
0022898326
-
Protein sorting in yeast: mutants defective in vacuolar biogenesis mislocalize vacuolar proteins into the late secretory pathway
-
Rothman J, Stevens TH. Protein sorting in yeast: mutants defective in vacuolar biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 1986; 47:1041-51.
-
(1986)
Cell
, vol.47
, pp. 1041-1051
-
-
Rothman, J.1
Stevens, T.H.2
-
32
-
-
14044277429
-
The molecular machinery of autophagy: unanswered questions
-
Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci 2005; 118:7-18.
-
(2005)
J Cell Sci
, vol.118
, pp. 7-18
-
-
Klionsky, D.J.1
-
33
-
-
0037005133
-
Autophagy in yeast: a review of the molecular machinery
-
Huang WP, Klionsky DJ. Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 2002; 27:409-20.
-
(2002)
Cell Struct Funct
, vol.27
, pp. 409-420
-
-
Huang, W.P.1
Klionsky, D.J.2
-
34
-
-
22044442015
-
Autophagosomes: biogenesis from scratch?
-
Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 2005; 17:415-22.
-
(2005)
Curr Opin Cell Biol
, vol.17
, pp. 415-422
-
-
Reggiori, F.1
Klionsky, D.J.2
-
35
-
-
0038309329
-
The molecular mechanism of autophagy
-
Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med 2003; 9:65-76.
-
(2003)
Mol Med
, vol.9
, pp. 65-76
-
-
Wang, C.W.1
Klionsky, D.J.2
-
36
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408:488-92.
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
-
37
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation system essential for autophagy. Nature 1998; 395:395-8.
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
Noda, T.2
Yoshimori, T.3
Tanaka, Y.4
Ishii, T.5
George, M.D.6
-
38
-
-
0025363276
-
Studies on the mechanisms of autophagy: formation of the autophagic vacuole
-
Dunn WA Jr. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 1990; 110:1923-33.
-
(1990)
J Cell Biol
, vol.110
, pp. 1923-1933
-
-
Dunn W.A., Jr.1
-
39
-
-
0028855325
-
Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris
-
Tuttle DL, Dunn WA. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 1995; 108:25-35.
-
(1995)
J Cell Sci
, vol.108
, pp. 25-35
-
-
Tuttle, D.L.1
Dunn, W.A.2
-
40
-
-
0032895859
-
Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein
-
Yuan W, Stromhaug PE, Dunn WA. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell 1999; 10:1353-66.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1353-1366
-
-
Yuan, W.1
Stromhaug, P.E.2
Dunn, W.A.3
-
41
-
-
0015100291
-
Inactivation of fructose-1,6-bisphosphatase by glucose in yeast
-
Gancedo C. Inactivation of fructose-1,6-bisphosphatase by glucose in yeast. J Bacteriol 1971; 107:401-5.
-
(1971)
J Bacteriol
, vol.107
, pp. 401-405
-
-
Gancedo, C.1
-
42
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol 1998; 62:334-61.
-
(1998)
Microbiol Mol Biol
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
43
-
-
0023106730
-
Anomeric specificity of glucose effect on cAMP, fructose-1,6-bisphosphatase and trehalase in yeast
-
Toyoda Y, Fuji H, Miwa I, Okuda J, Sy J. Anomeric specificity of glucose effect on cAMP, fructose-1,6-bisphosphatase and trehalase in yeast. Biochem Biophys Res Comm 1987; 43:212-7.
-
(1987)
Biochem Biophys Res Comm
, vol.43
, pp. 212-217
-
-
Toyoda, Y.1
Fuji, H.2
Miwa, I.3
Okuda, J.4
Sy, J.5
-
44
-
-
0033118209
-
Glucose repression in yeast
-
Carlson M. Glucose repression in yeast. Curr Opin Microbiol 1999; 2:202-7.
-
(1999)
Curr Opin Microbiol
, vol.2
, pp. 202-207
-
-
Carlson, M.1
-
45
-
-
0024832940
-
Proteolytic catabolite inactivation in Saccharomyces cerevisiae
-
Holzer H. Proteolytic catabolite inactivation in Saccharomyces cerevisiae. Revis Biol Cellular 1989; 21:305-19.
-
(1989)
Revis Biol Cellular
, vol.21
, pp. 305-319
-
-
Holzer, H.1
-
46
-
-
0028334289
-
Catabolite inactivation of heterologous fructose-1,6-bisphosphatases and fructose-1,6-bisphosphatase-beta-galactosidase fusion proteins in Saccharomyces cerevisiae
-
Gamo FJ, Navas MA, Blazquez MA, Gancedo C, Gancedo JM. Catabolite inactivation of heterologous fructose-1,6-bisphosphatases and fructose-1,6-bisphosphatase-beta-galactosidase fusion proteins in Saccharomyces cerevisiae. Eur J Biochem 1994; 222:879-84.
-
(1994)
Eur J Biochem
, vol.222
, pp. 879-884
-
-
Gamo, F.J.1
Navas, M.A.2
Blazquez, M.A.3
Gancedo, C.4
Gancedo, J.M.5
-
47
-
-
0037040938
-
Two distinct proteolytic systems responsible for glucose induced degradation of fructose-1, 6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway
-
Horak J, Wolf DH. Two distinct proteolytic systems responsible for glucose induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J Biol Chem 2002; 77:8248-54.
-
(2002)
J Biol Chem
, vol.77
, pp. 8248-8254
-
-
Horak, J.1
Wolf, D.H.2
-
48
-
-
0029560314
-
Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis
-
Riballo EM, Herwerjer D, Wolf D, Lagunas R. Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis. J Bacteriol 1995; 177:5622-7.
-
(1995)
J Bacteriol
, vol.177
, pp. 5622-5627
-
-
Riballo, E.M.1
Herwerjer, D.2
Wolf, D.3
Lagunas, R.4
-
49
-
-
24044488945
-
The ubiquitin ligase SCF(Grr1) is required for Gal2p degradation in the yeast Saccharomyces cerevisiae
-
Horak J, Wolf DH. The ubiquitin ligase SCF(Grr1) is required for Gal2p degradation in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2005; 335:1185-90.
-
(2005)
Biochem Biophys Res Commun
, vol.335
, pp. 1185-1190
-
-
Horak, J.1
Wolf, D.H.2
-
50
-
-
33745961498
-
Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization
-
Gadura N, Michels CA. Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization. Curr Genet 2006; 50:101-14.
-
(2006)
Curr Genet
, vol.50
, pp. 101-114
-
-
Gadura, N.1
Michels, C.A.2
-
51
-
-
0020478550
-
Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme
-
Mazon MJ, Gancedo JM, Gancedo C. Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme. J Bio Chem 1982; 257:1128-30.
-
(1982)
J Bio Chem
, vol.257
, pp. 1128-1130
-
-
Mazon, M.J.1
Gancedo, J.M.2
Gancedo, C.3
-
52
-
-
0023664652
-
Phosphorylation in vivo of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase at the cyclic AMP-dependent site
-
Rittenhouse J, Moberly L, Marcus F. Phosphorylation in vivo of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase at the cyclic AMP-dependent site. J Biol Chem 1987; 262:10114-9.
-
(1987)
J Biol Chem
, vol.262
, pp. 10114-10119
-
-
Rittenhouse, J.1
Moberly, L.2
Marcus, F.3
-
53
-
-
0023356219
-
Glucose induced degradation of yeast fructose-1,6-bisphosphatase requires additional triggering events besides protein phosphorylation
-
Lamponi SP, Galassi P, Tortora, Guerritore A. Glucose induced degradation of yeast fructose-1,6-bisphosphatase requires additional triggering events besides protein phosphorylation. FEBS 1987; 216:265-9.
-
(1987)
FEBS
, vol.216
, pp. 265-269
-
-
Lamponi, S.P.1
Galassi, P.2
Tortora3
Guerritore, A.4
-
54
-
-
0032404121
-
Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway
-
Jiang Y, Davis C, Broach JR. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 1998; 17:6942-51.
-
(1998)
EMBO J
, vol.17
, pp. 6942-6951
-
-
Jiang, Y.1
Davis, C.2
Broach, J.R.3
-
55
-
-
1642287426
-
The type 1 phosphatase Reg1p-Glc7p is required for the glucose-induced degradation of fructose-1,6-bisphosphatase in the vacuole
-
Cui DY, Brown CR, Chiang HL. The type 1 phosphatase Reg1p-Glc7p is required for the glucose-induced degradation of fructose-1,6-bisphosphatase in the vacuole. J Biol Chem 2004; 279:9713-24.
-
(2004)
J Biol Chem
, vol.279
, pp. 9713-9724
-
-
Cui, D.Y.1
Brown, C.R.2
Chiang, H.L.3
-
56
-
-
0032566737
-
Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae
-
Hammerle M, Bauer J, Rose M, Szallies A, Thumm M, Dusterhus S, et al. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J Biol Chem 1998; 273:25000-5.
-
(1998)
J Biol Chem
, vol.273
, pp. 25000-25005
-
-
Hammerle, M.1
Bauer, J.2
Rose, M.3
Szallies, A.4
Thumm, M.5
Dusterhus, S.6
-
57
-
-
0038709277
-
Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways
-
Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD, et al. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 2003; 14:1652-63.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 1652-1663
-
-
Regelmann, J.1
Schule, T.2
Josupeit, F.S.3
Horak, J.4
Rose, M.5
Entian, K.D.6
-
58
-
-
0028815630
-
Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation via the ubiquitin pathway
-
Schork SM, Thumm M, Wolf DH. Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation via the ubiquitin pathway. J Biol Chem 1995; 270:26446-50.
-
(1995)
J Biol Chem
, vol.270
, pp. 26446-26450
-
-
Schork, S.M.1
Thumm, M.2
Wolf, D.H.3
-
59
-
-
0028108317
-
Catabolite inactivation of fructose-1,6-bisphosphatase in yeast is mediated by the proteasome
-
Schork SM, Bee G, Thumm M, Wolf DH. Catabolite inactivation of fructose-1,6-bisphosphatase in yeast is mediated by the proteasome. FEBS Lett 1994; 349:270-4.
-
(1994)
FEBS Lett
, vol.349
, pp. 270-274
-
-
Schork, S.M.1
Bee, G.2
Thumm, M.3
Wolf, D.H.4
-
60
-
-
0025804582
-
Regulated import and degradation of a cytosolic protein in the yeast vacuole
-
Chiang HL, Schekman R. Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 1991; 350:313-8.
-
(1991)
Nature
, vol.350
, pp. 313-318
-
-
Chiang, H.L.1
Schekman, R.2
-
61
-
-
0029875385
-
Selective uptake of cytosolic, peroxisomal and plasma membrane proteins by the yeast vacuole
-
Chiang HL, Schekman R, Hamamoto S. Selective uptake of cytosolic, peroxisomal and plasma membrane proteins by the yeast vacuole. J Biol Chem 1996; 271:9934-41.
-
(1996)
J Biol Chem
, vol.271
, pp. 9934-9941
-
-
Chiang, H.L.1
Schekman, R.2
Hamamoto, S.3
-
62
-
-
0343172098
-
Site of catabolite inactivation
-
Chiang H-L, Schekman R. Site of catabolite inactivation. Nature 1994; 369:284.
-
(1994)
Nature
, vol.369
, pp. 284
-
-
Chiang, H.-L.1
Schekman, R.2
-
63
-
-
10344259661
-
Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events
-
Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004; 279:49138-50.
-
(2004)
J Biol Chem
, vol.279
, pp. 49138-49150
-
-
Hung, G.C.1
Brown, C.R.2
Wolfe, A.B.3
Liu, J.4
Chiang, H.L.5
-
64
-
-
0032488997
-
In vitro reconstitution of glucose induced targeting of fructose-1,6-bisphosphatase into the vacuole in semi-intact yeast cells
-
Shieh HL, Chiang HL. In vitro reconstitution of glucose induced targeting of fructose-1,6-bisphosphatase into the vacuole in semi-intact yeast cells. J Biol Chem 1998; 273:3381-7.
-
(1998)
J Biol Chem
, vol.273
, pp. 3381-3387
-
-
Shieh, H.L.1
Chiang, H.L.2
-
65
-
-
0026788169
-
Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast
-
Minard KI, McAlister-Henn L. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J Biol Chem 1992; 267:17458-64.
-
(1992)
J Biol Chem
, vol.267
, pp. 17458-17464
-
-
Minard, K.I.1
McAlister-Henn, L.2
-
66
-
-
0028046969
-
Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae
-
Minard KI, McAlister-Henn L. Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae. Arch Biochem Biophys 1994; 315:302-9.
-
(1994)
Arch Biochem Biophys
, vol.315
, pp. 302-309
-
-
Minard, K.I.1
McAlister-Henn, L.2
-
67
-
-
0037477462
-
Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes
-
Gibson N, McAlister-Henn L. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. J Biol Chem 2003; 278:25628-36.
-
(2003)
J Biol Chem
, vol.278
, pp. 25628-25636
-
-
Gibson, N.1
McAlister-Henn, L.2
-
68
-
-
0029844569
-
Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae
-
Hoffman M, Chiang HL. Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 1996; 143:1555-66.
-
(1996)
Genetics
, vol.143
, pp. 1555-1566
-
-
Hoffman, M.1
Chiang, H.L.2
-
69
-
-
0036473043
-
Vid22p, a novel plasma membrane is required for the fructose-1,6-bisphosphatase degradation pathway
-
Brown CR, McCann JA, Hung G, Elco C, Chiang HL. Vid22p, a novel plasma membrane is required for the fructose-1,6-bisphosphatase degradation pathway. J Cell Sci 2001; 115:655-66.
-
(2001)
J Cell Sci
, vol.115
, pp. 655-666
-
-
Brown, C.R.1
McCann, J.A.2
Hung, G.3
Elco, C.4
Chiang, H.L.5
-
70
-
-
54449096709
-
The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation
-
Brown CR, Wolfe AB, Cui D, Chiang HL. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008; 283:26116-27.
-
(2008)
J Biol Chem
, vol.283
, pp. 26116-26127
-
-
Brown, C.R.1
Wolfe, A.B.2
Cui, D.3
Chiang, H.L.4
-
71
-
-
0031019152
-
Identification of novel vesicles in the cytosol to vacuole protein degradation pathway
-
Huang PH, Chiang HL. Identification of novel vesicles in the cytosol to vacuole protein degradation pathway. J Cell Biol 1997; 136:803-10.
-
(1997)
J Cell Biol
, vol.136
, pp. 803-810
-
-
Huang, P.H.1
Chiang, H.L.2
-
72
-
-
0343962235
-
The heat shock protein Ssa2p is required for import of fructose 1-6-bisphosphatase into Vid vesicles
-
Brown CR, McCann JA, Chiang HL. The heat shock protein Ssa2p is required for import of fructose 1-6-bisphosphatase into Vid vesicles. J Cell Biol 2000; 150:65-76.
-
(2000)
J Cell Biol
, vol.150
, pp. 65-76
-
-
Brown, C.R.1
McCann, J.A.2
Chiang, H.L.3
-
73
-
-
0035930607
-
Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles
-
Brown CR, Cui DY, Hung GG, Chiang HL. Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles. J Biol Chem 2001; 276:48017-26.
-
(2001)
J Biol Chem
, vol.276
, pp. 48017-48026
-
-
Brown, C.R.1
Cui, D.Y.2
Hung, G.G.3
Chiang, H.L.4
-
74
-
-
0035971094
-
Biochemical analysis of fructose-1,6-bisphosphatase import into vacuole import and degradation vesicles reveals a role for UBC1 in vesicle biogenesis
-
Shieh HL, Chen Y, Brown CR, Chiang HL. Biochemical analysis of fructose-1,6-bisphosphatase import into vacuole import and degradation vesicles reveals a role for UBC1 in vesicle biogenesis. J Biol Chem 2001; 276:10398-406.
-
(2001)
J Biol Chem
, vol.276
, pp. 10398-10406
-
-
Shieh, H.L.1
Chen, Y.2
Brown, C.R.3
Chiang, H.L.4
-
75
-
-
0032559855
-
Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation
-
Chiang MC, Chiang HL. Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation. J Cell Biol 1998; 140:1347-56.
-
(1998)
J Cell Biol
, vol.140
, pp. 1347-1356
-
-
Chiang, M.C.1
Chiang, H.L.2
-
76
-
-
34250897699
-
The vacuolar ATPase is required for the degradation of fructose-1,6-bisphoaphatase in the vacuole
-
Liu JJ, Brown CR, Chiang HL. The vacuolar ATPase is required for the degradation of fructose-1,6-bisphoaphatase in the vacuole. Autophagy 2005; 3:146-56.
-
(2005)
Autophagy
, vol.3
, pp. 146-156
-
-
Liu, J.J.1
Brown, C.R.2
Chiang, H.L.3
-
77
-
-
0033180320
-
Mechanisms of vesicles formation: insights from the COP system
-
Wieland F, Harter C. Mechanisms of vesicles formation: insights from the COP system. Curr Opin Cell Biol 1999; 11:440-6.
-
(1999)
Curr Opin Cell Biol
, vol.11
, pp. 440-446
-
-
Wieland, F.1
Harter, C.2
-
78
-
-
8444242974
-
Bi-directional protein transport between the ER and Golgi
-
Lee MC, Miller EA, Goldberg J, Orci L, Schekman R. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 2004; 20:87-123.
-
(2004)
Annu Rev Cell Dev Biol
, vol.20
, pp. 87-123
-
-
Lee, M.C.1
Miller, E.A.2
Goldberg, J.3
Orci, L.4
Schekman, R.5
-
79
-
-
3142523461
-
COP and clathrin-coated vesicle budding: different pathways, common approaches
-
McMahon HT, Mills IG. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 2004; 16:379-91.
-
(2004)
Curr Opin Cell Biol
, vol.16
, pp. 379-391
-
-
McMahon, H.T.1
Mills, I.G.2
-
80
-
-
0038726917
-
ER-to-Golgi transport: COP I and COP II function
-
Duden R. ER-to-Golgi transport: COP I and COP II function. Mol Membr Biol 2003; 20:197-207.
-
(2003)
Mol Membr Biol
, vol.20
, pp. 197-207
-
-
Duden, R.1
-
81
-
-
85088004526
-
cytoplasmic coat proteins involved in endosome function
-
Whitney JA, Gomez M, Sheff D, Kreis T, Mellman I. cytoplasmic coat proteins involved in endosome function. Cell 1995; 67:239-53.
-
(1995)
Cell
, vol.67
, pp. 239-253
-
-
Whitney, J.A.1
Gomez, M.2
Sheff, D.3
Kreis, T.4
Mellman, I.5
-
82
-
-
0029869843
-
An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes
-
Aniento F, Gu F, Parton RG, Gruenberg J. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol 1996; 133:29-41.
-
(1996)
J Cell Biol
, vol.133
, pp. 29-41
-
-
Aniento, F.1
Gu, F.2
Parton, R.G.3
Gruenberg, J.4
-
83
-
-
0030812588
-
Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes
-
Gu F, Aniento F, Parton RG, Gruenberg J. Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J Cell Biol 1997; 139:1183-95.
-
(1997)
J Cell Biol
, vol.139
, pp. 1183-1195
-
-
Gu, F.1
Aniento, F.2
Parton, R.G.3
Gruenberg, J.4
-
84
-
-
0033515427
-
Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes
-
Piguet V, Gu F, Foti M, Demaurex N, Gruenberg J, Carpentier JL, et al. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 1999; 97:63-73.
-
(1999)
Cell
, vol.97
, pp. 63-73
-
-
Piguet, V.1
Gu, F.2
Foti, M.3
Demaurex, N.4
Gruenberg, J.5
Carpentier, J.L.6
-
85
-
-
0031425955
-
Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP
-
Daro E, Sheff D, Gomez M, Kreis T, Mellman I. Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP. J Cell Biol 1997; 139:1747-59.
-
(1997)
J Cell Biol
, vol.139
, pp. 1747-1759
-
-
Daro, E.1
Sheff, D.2
Gomez, M.3
Kreis, T.4
Mellman, I.5
-
86
-
-
33846130922
-
Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast
-
Gabriely G, Kama R, Gerst J. Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast. Mol Cell Biol 2007; 27:526-40
-
(2007)
Mol Cell Biol
, vol.27
, pp. 526-540
-
-
Gabriely, G.1
Kama, R.2
Gerst, J.3
-
87
-
-
0028929242
-
A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast
-
Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 1995; 128:790-2.
-
(1995)
J Cell Biol
, vol.128
, pp. 790-792
-
-
Vida, T.A.1
Emr, S.D.2
-
88
-
-
33845704018
-
The budding yeast endocytic pathway
-
Toret CP, Drubin DG. The budding yeast endocytic pathway. J Cell Sci 2006; 119:4585-7.
-
(2006)
J Cell Sci
, vol.119
, pp. 4585-4587
-
-
Toret, C.P.1
Drubin, D.G.2
-
89
-
-
0041721457
-
Actin assembly and endocytosis:from yeast to mammals
-
Engqvust-Goldstein A and Drubin D. Actin assembly and endocytosis:from yeast to mammals. Annu Rev Cell Dev Biol 2003; 19:287-332.
-
(2003)
Annu Rev Cell Dev Biol
, vol.19
, pp. 287-332
-
-
Engqvust-Goldstein, A.1
Drubin, D.2
-
90
-
-
0036796963
-
Novel proteins linking the actin cytoskeleton to the endocytic machinery in Saccharomyces cerevisiae
-
Dewar H, Warren DT, Gardiner FC, Gourlay CG, Satish N, Richardson MR, Andrews PD, Ayscough KR. Novel proteins linking the actin cytoskeleton to the endocytic machinery in Saccharomyces cerevisiae. Mol Biol Cell 2002; 13:3646-61.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 3646-3661
-
-
Dewar, H.1
Warren, D.T.2
Gardiner, F.C.3
Gourlay, C.G.4
Satish, N.5
Richardson, M.R.6
Andrews, P.D.7
Ayscough, K.R.8
-
91
-
-
0037089086
-
Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics
-
Warren DT, Andrews PD, Gourlay CW, Ayscough KR. Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics. J Cell Sci 2002; 115:1703-15.
-
(2002)
J Cell Sci
, vol.115
, pp. 1703-1715
-
-
Warren, D.T.1
Andrews, P.D.2
Gourlay, C.W.3
Ayscough, K.R.4
-
92
-
-
0037092043
-
Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis
-
Howard JP, Hutton JL, Olson JM, Payne GS. Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis. J Cell Biol 2002; 157:315-26.
-
(2002)
J Cell Biol
, vol.157
, pp. 315-326
-
-
Howard, J.P.1
Hutton, J.L.2
Olson, J.M.3
Payne, G.S.4
-
93
-
-
0344827286
-
A pathway for association of receptors, adaptors, and actin during endocytic internalization
-
Kaksonen M, Sun Y, Drubin DG. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 2003; 115:475-87.
-
(2003)
Cell
, vol.115
, pp. 475-487
-
-
Kaksonen, M.1
Sun, Y.2
Drubin, D.G.3
-
94
-
-
54249111115
-
The Yeast GID Complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism
-
Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, et al. The Yeast GID Complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol Biol Cell 1998; 19:3323-33.
-
(1998)
Mol Biol Cell
, vol.19
, pp. 3323-3333
-
-
Santt, O.1
Pfirrmann, T.2
Braun, B.3
Juretschke, J.4
Kimmig, P.5
Scheel, H.6
|