메뉴 건너뛰기




Volumn 39, Issue 14, 2012, Pages 11709-11717

Probabilistic and discriminative group-wise feature selection methods for credit risk analysis

Author keywords

Credit risk analysis; Feature selection; Multiple kernel learning; Probit classifier; Sparsity

Indexed keywords

BINARY CLASSIFICATION; BINARY CLASSIFIERS; BINARY FEATURES; CATEGORICAL VARIABLES; CREDIT RISK ANALYSIS; DATA COLLECTION; DATA SETS; DECISION PROCESS; FEATURE SELECTION ALGORITHM; FEATURE SELECTION METHODS; FINANCIAL CRISIS; FINANCIAL ORGANIZATIONS; INTERPRETABILITY; KERNEL CONSTRUCTION; MULTIPLE KERNEL LEARNING; OPERATIONAL RISKS; REAL-LIFE APPLICATIONS; SPARSITY;

EID: 84861809465     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2012.04.050     Document Type: Article
Times cited : (11)

References (44)
  • 1
    • 45049088395 scopus 로고    scopus 로고
    • Neural nets versus conventional techniques in credit scoring in Egyptian banking
    • H. Abdou, J. Pointon, and A. El-Masry Neural nets versus conventional techniques in credit scoring in Egyptian banking Expert Systems with Applications 35 2008 1275 1292
    • (2008) Expert Systems with Applications , vol.35 , pp. 1275-1292
    • Abdou, H.1    Pointon, J.2    El-Masry, A.3
  • 5
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • DOI 10.1109/72.935101, PII S1045922701050068
    • A.F. Atiya Bankruptcy prediction for credit risk using neural networks: A survey and new results IEEE Transactions on Neural Networks 12 2001 929 935 (Pubitemid 32732830)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.F.1
  • 6
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group Lasso and multiple kernel learning
    • F.R. Bach Consistency of the group Lasso and multiple kernel learning Journal of Machine Learning Research 9 2008 1179 1225
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 11
    • 0012579787 scopus 로고    scopus 로고
    • The importance of credit scoring models in improving cash flow and collection
    • J. Brill The importance of credit scoring models in improving cash flow and collection Business Credit 100 1998 16 17
    • (1998) Business Credit , vol.100 , pp. 16-17
    • Brill, J.1
  • 12
    • 30944442440 scopus 로고    scopus 로고
    • A study of Taiwan's issuer credit rating systems using support vector machines
    • DOI 10.1016/j.eswa.2005.10.003, PII S0957417405002836, Intelligent Information Systems for Financial Engineering
    • W.-H. Chen, and J.-Y. Shih A study of Taiwan's issuer credit rating systems using support vector machines Expert Systems with Applications 30 2006 427 435 (Pubitemid 43113264)
    • (2006) Expert Systems with Applications , vol.30 , Issue.3 , pp. 427-435
    • Chen, W.-H.1    Shih, J.-Y.2
  • 13
    • 79953715935 scopus 로고    scopus 로고
    • Knowledge discovery using neural approach for SME's credit risk analysis problem in Turkey
    • G. Derelioglu, and F. Gürgen Knowledge discovery using neural approach for SME's credit risk analysis problem in Turkey Expert Systems with Applications 38 2011 9313 9318
    • (2011) Expert Systems with Applications , vol.38 , pp. 9313-9318
    • Derelioglu, G.1    Gürgen, F.2
  • 14
    • 60849085971 scopus 로고    scopus 로고
    • Are we modeling the right thing? the impact of incorrect problem specification in credit scoring
    • S. Finlay Are we modeling the right thing? The impact of incorrect problem specification in credit scoring Expert Systems with Applications 36 2009 9065 9071
    • (2009) Expert Systems with Applications , vol.36 , pp. 9065-9071
    • Finlay, S.1
  • 17
    • 70349580621 scopus 로고    scopus 로고
    • A data driven ensemble classifier for credit scoring analysis
    • N.-C. Hsieh, and L.-P. Hung A data driven ensemble classifier for credit scoring analysis Expert Systems with Applications 37 2010 534 545
    • (2010) Expert Systems with Applications , vol.37 , pp. 534-545
    • Hsieh, N.-C.1    Hung, L.-P.2
  • 18
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Z. Huang, H. Chen, C.-J. Hsu, W.-H. Chen, and S. Wu Credit rating analysis with support vector machines and neural networks: A market comparative study Decision Support Systems 37 2004 543 558
    • (2004) Decision Support Systems , vol.37 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.-J.3    Chen, W.-H.4    Wu, S.5
  • 19
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • DOI 10.1016/j.eswa.2006.07.007, PII S095741740600217X
    • C.-L. Huang, M.-C. Chen, and C.-J. Wang Credit scoring with a data mining approach based on support vector machines Expert Systems with Applications 33 2007 847 856 (Pubitemid 46522466)
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.-L.1    Chen, M.-C.2    Wang, C.-J.3
  • 20
    • 33646142788 scopus 로고    scopus 로고
    • Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
    • Y.-M. Huang, C.-M. Hung, and H.C. Jiau Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem Nonlinear Analysis: Real World Applications 7 2006 720 747
    • (2006) Nonlinear Analysis: Real World Applications , vol.7 , pp. 720-747
    • Huang, Y.-M.1    Hung, C.-M.2    Jiau, H.C.3
  • 21
    • 78649516309 scopus 로고    scopus 로고
    • Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes
    • A. Khashman Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes Expert Systems with Applications 37 2010 6233 6239
    • (2010) Expert Systems with Applications , vol.37 , pp. 6233-6239
    • Khashman, A.1
  • 22
    • 70349453862 scopus 로고    scopus 로고
    • Support vector machines for default prediction of SMEs based on technology credit
    • H.S. Kim, and S.Y. Sohn Support vector machines for default prediction of SMEs based on technology credit European Journal of Operational Research 201 2010 838 846
    • (2010) European Journal of Operational Research , vol.201 , pp. 838-846
    • Kim, H.S.1    Sohn, S.Y.2
  • 28
    • 79953751205 scopus 로고    scopus 로고
    • An evolution strategy-based multiple kernels multi-criteria programing approach: The case of credit decision making
    • J. Li, L. Wei, G. Li, and W. Xu An evolution strategy-based multiple kernels multi-criteria programing approach: The case of credit decision making Decision Support Systems 51 2011 292 298
    • (2011) Decision Support Systems , vol.51 , pp. 292-298
    • Li, J.1    Wei, L.2    Li, G.3    Xu, W.4
  • 30
    • 58749088971 scopus 로고    scopus 로고
    • A binary classification method for bankruptcy prediction
    • J.H. Min, and C. Jeong A binary classification method for bankruptcy prediction Expert Systems with Applications 36 2009 5256 5263
    • (2009) Expert Systems with Applications , vol.36 , pp. 5256-5263
    • Min, J.H.1    Jeong, C.2
  • 31
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • B. Schölkopf, K. Tsuda, J.-P. Vert, The MIT Press Chapter 3
    • W.S. Noble Support vector machine applications in computational biology B. Schölkopf, K. Tsuda, J.-P. Vert, Kernel methods in computational biology 2004 The MIT Press Chapter 3
    • (2004) Kernel Methods in Computational Biology
    • Noble, W.S.1
  • 32
    • 38649085309 scopus 로고    scopus 로고
    • A multi-criteria convex quadratic programing model for credit data analysis
    • Y. Peng, G. Kou, Y. Shi, and Z. Chen A multi-criteria convex quadratic programing model for credit data analysis Decision Support Systems 44 2008 1016 1030
    • (2008) Decision Support Systems , vol.44 , pp. 1016-1030
    • Peng, Y.1    Kou, G.2    Shi, Y.3    Chen, Z.4
  • 33
    • 78751639426 scopus 로고    scopus 로고
    • An empirical study of classification algorithm evaluation for financial risk prediction
    • Y. Peng, G. Wang, G. Kou, and Y. Shi An empirical study of classification algorithm evaluation for financial risk prediction Applied Soft Computing 11 2011 2906 2915
    • (2011) Applied Soft Computing , vol.11 , pp. 2906-2915
    • Peng, Y.1    Wang, G.2    Kou, G.3    Shi, Y.4
  • 35
    • 77956686251 scopus 로고    scopus 로고
    • Multiple criteria optimization-based data mining methods and applications: A systematic survey
    • Y. Shi Multiple criteria optimization-based data mining methods and applications: A systematic survey Knowledge and Information System 24 2010 369 391
    • (2010) Knowledge and Information System , vol.24 , pp. 369-391
    • Shi, Y.1
  • 36
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioral scoring: Forecasting financial risk of lending to consumers
    • L.C. Thomas A survey of credit and behavioral scoring: Forecasting financial risk of lending to consumers International Journal of Forecasting 16 2000 149 172
    • (2000) International Journal of Forecasting , vol.16 , pp. 149-172
    • Thomas, L.C.1
  • 37
    • 71349085322 scopus 로고    scopus 로고
    • Multiple classifier application to credit risk assessment
    • B. Twala Multiple classifier application to credit risk assessment Expert Systems with Applications 37 2010 3326 3336
    • (2010) Expert Systems with Applications , vol.37 , pp. 3326-3336
    • Twala, B.1
  • 42
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector machine to evaluate credit risk
    • DOI 10.1109/TFUZZ.2005.859320
    • W. Yongqiao, W. Shouyang, and K.K. Lai A new fuzzy support vector machine to evaluate credit risk IEEE Transactions on Fuzzy Systems 13 2005 820 831 (Pubitemid 43065965)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.6 , pp. 820-831
    • Wang, Y.1    Wang, S.2    Lai, K.K.3
  • 43
    • 73549102166 scopus 로고    scopus 로고
    • A practical approach to bankruptcy prediction for small businesses: Substituting the unavailable financial data for credit card sales information
    • J.S. Yoon, and Y.S. Kwon A practical approach to bankruptcy prediction for small businesses: Substituting the unavailable financial data for credit card sales information Expert Systems with Applications 37 2010 3624 3629
    • (2010) Expert Systems with Applications , vol.37 , pp. 3624-3629
    • Yoon, J.S.1    Kwon, Y.S.2
  • 44
    • 70349437327 scopus 로고    scopus 로고
    • Least squares support vector machines ensemble models for credit scoring
    • L. Zhou, K.K. Lai, and L. Yu Least squares support vector machines ensemble models for credit scoring Expert Systems with Applications 37 2010 127 133
    • (2010) Expert Systems with Applications , vol.37 , pp. 127-133
    • Zhou, L.1    Lai, K.K.2    Yu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.