메뉴 건너뛰기




Volumn 201, Issue 3, 2010, Pages 838-846

Support vector machines for default prediction of SMEs based on technology credit

Author keywords

Default prediction model; Small and medium enterprises; Support vector machines

Indexed keywords

BACK PROPAGATION NEURAL NETWORKS; DEFAULT PREDICTION MODEL; ECONOMIC INDICATORS; FINANCIAL RATIOS; GOVERNMENTAL FUNDS; GROWTH POTENTIAL; INPUT VARIABLES; INVESTMENT DECISIONS; LOGISTIC REGRESSIONS; SCORING MODELS; SMALL AND MEDIUM ENTERPRISE; SMALL AND MEDIUM ENTERPRISES; SVM MODEL; TECHNOLOGY EVALUATION; TECHNOLOGY-BASED;

EID: 70349453862     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2009.03.036     Document Type: Article
Times cited : (163)

References (45)
  • 1
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and prediction of corporate bankruptcy
    • Altman E.I. Financial ratios, discriminant analysis and prediction of corporate bankruptcy. Journal of Finance 23 (1968) 589-609
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 0003779988 scopus 로고
    • Cash flow reporting and financial distress models: Testing of hypotheses
    • Aziz A., and Lawson G. Cash flow reporting and financial distress models: Testing of hypotheses. Financial Management 18 (1989) 55-63
    • (1989) Financial Management , vol.18 , pp. 55-63
    • Aziz, A.1    Lawson, G.2
  • 4
    • 84980201928 scopus 로고
    • Bankruptcy prediction - An investigation of cash flow based models
    • Aziz A., Emanuel D., and Lawson G. Bankruptcy prediction - An investigation of cash flow based models. Journal of Management Studies 25 (1988) 419-437
    • (1988) Journal of Management Studies , vol.25 , pp. 419-437
    • Aziz, A.1    Emanuel, D.2    Lawson, G.3
  • 5
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure, empirical research in accounting: Selected studied
    • Beaver W. Financial ratios as predictors of failure, empirical research in accounting: Selected studied. Journal of Accounting Research (1966) 71-111
    • (1966) Journal of Accounting Research , pp. 71-111
    • Beaver, W.1
  • 6
    • 0031208638 scopus 로고    scopus 로고
    • Learning distributions by their density levels: A paradigm for learning without a teacher
    • Ben-David S., and Lindenbaum M. Learning distributions by their density levels: A paradigm for learning without a teacher. Journal of Computer and System Sciences 55 (1997) 171-182
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 171-182
    • Ben-David, S.1    Lindenbaum, M.2
  • 8
    • 84898957872 scopus 로고    scopus 로고
    • Improving the Accuracy and Speed of Support Vector Machines
    • MIT Press, Cambridge, MA pp. 475-481
    • Burges C.J.C., and Schokopf B. Improving the Accuracy and Speed of Support Vector Machines. Advances in Neural Information Processing Systems (1997), MIT Press, Cambridge, MA pp. 475-481
    • (1997) Advances in Neural Information Processing Systems
    • Burges, C.J.C.1    Schokopf, B.2
  • 9
    • 0002637722 scopus 로고
    • Mining for financial knowledge with CBR
    • Buta P. Mining for financial knowledge with CBR. AI Expert 9 (1994) 34-41
    • (1994) AI Expert , vol.9 , pp. 34-41
    • Buta, P.1
  • 10
    • 2442640511 scopus 로고    scopus 로고
    • Estimating energy demand of turkey based on economic indicators using genetic algorithm approach
    • Ceylan H., and Ozturk H.K. Estimating energy demand of turkey based on economic indicators using genetic algorithm approach. Energy Conversion and Management 45 (2004) 2525-2537
    • (2004) Energy Conversion and Management , vol.45 , pp. 2525-2537
    • Ceylan, H.1    Ozturk, H.K.2
  • 11
  • 12
    • 21244433075 scopus 로고    scopus 로고
    • Credit scoring models in the credit union environment using neural networks and genetic algorithms
    • Desai J.N., Conway, and Overstreet Jr. G.A. Credit scoring models in the credit union environment using neural networks and genetic algorithms. IMA Journal of Management Math 8 (1997) 324-346
    • (1997) IMA Journal of Management Math , vol.8 , pp. 324-346
    • Desai, J.N.1    Conway2    Overstreet Jr., G.A.3
  • 13
    • 0002379802 scopus 로고
    • An expert system approach to financial analysis: The case of S&L bankruptcy
    • Elmer P.J., and Borowski D.M. An expert system approach to financial analysis: The case of S&L bankruptcy. Financial Management 17 (1988) 66-76
    • (1988) Financial Management , vol.17 , pp. 66-76
    • Elmer, P.J.1    Borowski, D.M.2
  • 14
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Technical Report, Department of Computer Science and Information Engineering, National Taiwan University. Available at
    • Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2004. A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University. Available at: .
    • (2004)
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 15
    • 0003081097 scopus 로고
    • Using neural networks for credit scoring
    • Jensen H.L. Using neural networks for credit scoring. Managerial Finance 18 (1992) 15-26
    • (1992) Managerial Finance , vol.18 , pp. 15-26
    • Jensen, H.L.1
  • 18
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi S.S., and Lin C.J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation 15 (2003) 1667-1689
    • (2003) Neural Computation , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 19
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K.J. Financial time series forecasting using support vector machines. Neurocomputing 55 (2003) 307-319
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.J.1
  • 20
    • 35449000663 scopus 로고    scopus 로고
    • Technology scoring model considering rejected applicants and the effect of reject inference
    • Kim Y.S., and Sohn S.Y. Technology scoring model considering rejected applicants and the effect of reject inference. Journal of the Operational Research Society 58 (2007) 1341-1347
    • (2007) Journal of the Operational Research Society , vol.58 , pp. 1341-1347
    • Kim, Y.S.1    Sohn, S.Y.2
  • 21
    • 0036027367 scopus 로고    scopus 로고
    • Differentiating between good credits and bad credits using neuro-fuzzy systems
    • Malhotra R., and Malhotra D.K. Differentiating between good credits and bad credits using neuro-fuzzy systems. European Journal of Operational Research 136 (2002) 190-211
    • (2002) European Journal of Operational Research , vol.136 , pp. 190-211
    • Malhotra, R.1    Malhotra, D.K.2
  • 22
    • 84990557166 scopus 로고
    • Combining neural networks and statistical predictions to solve the classification problem in discriminant analysis
    • Markham I.S., and Ragsdale C.T. Combining neural networks and statistical predictions to solve the classification problem in discriminant analysis. Decision Sciences 26 (1995) 229-242
    • (1995) Decision Sciences , vol.26 , pp. 229-242
    • Markham, I.S.1    Ragsdale, C.T.2
  • 23
    • 34548574699 scopus 로고    scopus 로고
    • Technology scoring model for reflecting evaluator's perception within confidence limits
    • Moon T.H., and Sohn S.Y. Technology scoring model for reflecting evaluator's perception within confidence limits. European Journal of Operational Research 184 (2008) 981-989
    • (2008) European Journal of Operational Research , vol.184 , pp. 981-989
    • Moon, T.H.1    Sohn, S.Y.2
  • 24
    • 0031375732 scopus 로고    scopus 로고
    • Mukherjee, S., Osuna, E., Girosi, F., 1997. Nonlinear prediction of chaotic time series using support vector. In: Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL, pp. 511-520.
    • Mukherjee, S., Osuna, E., Girosi, F., 1997. Nonlinear prediction of chaotic time series using support vector. In: Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL, pp. 511-520.
  • 25
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson J.A. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research (1980) 109-131
    • (1980) Journal of Accounting Research , pp. 109-131
    • Ohlson, J.A.1
  • 27
    • 84990585716 scopus 로고
    • Two-group classification using neural networks
    • Patuwo E., Hu M.H., and Hung M.S. Two-group classification using neural networks. Decision Sciences 24 (1993) 825-845
    • (1993) Decision Sciences , vol.24 , pp. 825-845
    • Patuwo, E.1    Hu, M.H.2    Hung, M.S.3
  • 28
    • 26644448958 scopus 로고    scopus 로고
    • The prediction of bankruptcy of small- and medium-sized industrial firms
    • Pompe P.P.M., and Bilderbe J. The prediction of bankruptcy of small- and medium-sized industrial firms. Journal of Business Venturing 20 (2005) 847-868
    • (2005) Journal of Business Venturing , vol.20 , pp. 847-868
    • Pompe, P.P.M.1    Bilderbe, J.2
  • 29
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • Shin K.S., Lee T.S., and Kim H.J. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications 28 (2005) 127-135
    • (2005) Expert Systems with Applications , vol.28 , pp. 127-135
    • Shin, K.S.1    Lee, T.S.2    Kim, H.J.3
  • 30
    • 34249073098 scopus 로고    scopus 로고
    • Random effects logistic regression model for default prediction of technology credit guarantee fund
    • Sohn S.Y., and Kim H.S. Random effects logistic regression model for default prediction of technology credit guarantee fund. European Journal of Operational Research 183 (2007) 472-478
    • (2007) European Journal of Operational Research , vol.183 , pp. 472-478
    • Sohn, S.Y.1    Kim, H.S.2
  • 31
    • 11244271600 scopus 로고    scopus 로고
    • Improved technology scoring model for credit guarantee fund
    • Sohn S.Y., Moon T.H., and Kim S.H. Improved technology scoring model for credit guarantee fund. Expert Systems with Applications 28 (2005) 327-331
    • (2005) Expert Systems with Applications , vol.28 , pp. 327-331
    • Sohn, S.Y.1    Moon, T.H.2    Kim, S.H.3
  • 32
    • 33750966469 scopus 로고    scopus 로고
    • Predicting the financial performance index of technology fund for sme using structural equation model
    • Sohn S.Y., Kim H.S., and Moon T.H. Predicting the financial performance index of technology fund for sme using structural equation model. Expert Systems with Applications 32 (2007) 890-898
    • (2007) Expert Systems with Applications , vol.32 , pp. 890-898
    • Sohn, S.Y.1    Kim, H.S.2    Moon, T.H.3
  • 34
    • 0032664993 scopus 로고    scopus 로고
    • Improving the manufacturability of electronic designs
    • Stoneking D. Improving the manufacturability of electronic designs. IEEE Spectrum 36 (1999) 70-76
    • (1999) IEEE Spectrum , vol.36 , pp. 70-76
    • Stoneking, D.1
  • 36
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F.E.H., and Cao L. Application of support vector machines in financial time series forecasting. Omega 29 (2001) 309-317
    • (2001) Omega , vol.29 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 41
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D. Neural network credit scoring models. Computers and Operations Research 27 (2000) 1131-1152
    • (2000) Computers and Operations Research , vol.27 , pp. 1131-1152
    • West, D.1
  • 43
    • 0001272231 scopus 로고
    • The Prediction of corporate failure: The state of the art
    • Zavgren C. The Prediction of corporate failure: The state of the art. Journal of Accounting Literature 2 (1983) 1-37
    • (1983) Journal of Accounting Literature , vol.2 , pp. 1-37
    • Zavgren, C.1
  • 45
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
    • Zhang G.P., Hu M.Y., Patuwo B.E., and Indro D.C. Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research 116 (1999) 16-32
    • (1999) European Journal of Operational Research , vol.116 , pp. 16-32
    • Zhang, G.P.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.