메뉴 건너뛰기




Volumn 33, Issue 3, 2012, Pages 41-52

Multiagent learning: Basics, challenges, and prospects

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL LIFE; INTELLIGENT AGENTS; LEARNING ALGORITHMS; MACHINE LEARNING; MARKOV PROCESSES; MULTI AGENT SYSTEMS; OPTIMAL SYSTEMS; REINFORCEMENT LEARNING; ROBOTS; SURVEYS;

EID: 84861480021     PISSN: 07384602     EISSN: None     Source Type: Journal    
DOI: 10.1609/aimag.v33i3.2426     Document Type: Conference Paper
Times cited : (227)

References (85)
  • 1
    • 84864030941 scopus 로고    scopus 로고
    • An application of reinforcement learning to aerobatic helicopter flight
    • Cambridge, MA: The MIT Press
    • Abbeel, P.; Coates, A.; Quigley, M.; and Ng, A. Y. 2007. An Application of Reinforcement Learning to Aerobatic Helicopter Flight. In Neural Information Processing Systems, volume 19. Cambridge, MA: The MIT Press.
    • (2007) Neural Information Processing Systems , vol.19
    • Abbeel, P.1    Coates, A.2    Quigley, M.3    Ng, A.Y.4
  • 2
    • 70350699723 scopus 로고    scopus 로고
    • A multiagent reinforcement learning algorithm with non-linear dynamics
    • Abdallah, S., and Lesser, V. R. 2008. A Multiagent Reinforcement Learning Algorithm with Non-Linear Dynamics. Journal of Artificial Intelligence Research 33: 521-549.
    • (2008) Journal of Artificial Intelligence Research , vol.33 , pp. 521-549
    • Abdallah, S.1    Lesser, V.R.2
  • 4
    • 51649111408 scopus 로고    scopus 로고
    • Analyzing and visualizing multiagent rewards in dynamic and stochastic environments
    • Agogino, A. K., and Tumer, K. 2008. Analyzing and Visualizing Multiagent Rewards in Dynamic and Stochastic Environments. Journal of Autonomous Agents and MultiAgent Systems 17(2): 320-338.
    • (2008) Journal of Autonomous Agents and MultiAgent Systems , vol.17 , Issue.2 , pp. 320-338
    • Agogino, A.K.1    Tumer, K.2
  • 7
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R. K., and Zhang, T. 2005. A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data. Journal of Machine Learning Research 6(11): 1817- 1853.
    • (2005) Journal of Machine Learning Research , vol.6 , Issue.11 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 8
    • 84960565609 scopus 로고
    • A simple model of herd behavior
    • Banerjee, A. 1992. A Simple Model of Herd Behavior. Quarterly Journal of Economics 107(3): 797-817.
    • (1992) Quarterly Journal of Economics , vol.107 , Issue.3 , pp. 797-817
    • Banerjee, A.1
  • 9
    • 85012688561 scopus 로고
    • Princeton, NJ: Princeton University Press
    • Bellman, R. 1957. Dynamic Programming. Princeton, NJ: Princeton University Press.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 12
    • 31844436490 scopus 로고    scopus 로고
    • Convergence and no- regret in multiagent learning
    • Cambridge, MA: MIT Press
    • Bowling, M. 2004. Convergence and No- Regret In Multiagent Learning. In Advances in Neural Information Processing Systems, volume 17, 209-216, Cambridge, MA: MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.17 , pp. 209-216
    • Bowling, M.1
  • 13
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Bowling, M., and Veloso, M. 2002. Multiagent Learning Using a Variable Learning Rate. Artificial Intelligence 136(2): 215-250.
    • (2002) Artificial Intelligence , vol.136 , Issue.2 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 22
    • 0031122887 scopus 로고    scopus 로고
    • Ant colony systems: A cooperative learning approach to the travelling salesman problem
    • Dorigo, M., and Gambardella, L. M. 1997. Ant Colony Systems: A Cooperative Learning Approach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1): 53-66.
    • (1997) IEEE Transactions on Evolutionary Computation , vol.1 , Issue.1 , pp. 53-66
    • Dorigo, M.1    Gambardella, L.M.2
  • 24
    • 4344687948 scopus 로고    scopus 로고
    • Challenges in coevolutionary learning: Arms- race dynamics, openendedness, and mediocre stable states
    • Cambridge, MA: The MIT Press
    • Ficici, S. G., and Pollack, J. B. 1998. Challenges in Coevolutionary Learning: Arms- Race Dynamics, Openendedness, and Mediocre Stable States. In Proceedings of the 6th International Conference on Artificial Life, 238-247. Cambridge, MA: The MIT Press.
    • (1998) Proceedings of the 6th International Conference on Artificial Life , pp. 238-247
    • Ficici, S.G.1    Pollack, J.B.2
  • 25
    • 0002538582 scopus 로고
    • Imitation in animals: History, definition, and interpretation of data from the psychological laboratory
    • ed. T. Zentall, and B. Galef. Hillsdale, NJ: Lawrence Erlbaum Associates
    • Galef, B. 1988. Imitation in Animals: History, Definition, and Interpretation of Data from the Psychological Laboratory. In Social Learning: Psychologic and Biological Perspectives, ed. T. Zentall, and B. Galef. Hillsdale, NJ: Lawrence Erlbaum Associates.
    • (1988) Social Learning: Psychologic and Biological Perspectives
    • Galef, B.1
  • 26
    • 0038849370 scopus 로고    scopus 로고
    • Learning cases to compliment rules for conflict resolutions in multiagent systems
    • Papers from the 1996 AAAI Symposium, ed. S. Sen. Technical Report SS-96-01 Menlo Park, CA: AAAI Press
    • Haynes, T.; Lau, K.; and Sen, S. 1996. Learning Cases to Compliment Rules for Conflict Resolutions in Multiagent Systems. In Adaptation, Coevolution and Learning in Multiagent Systems. Papers from the 1996 AAAI Symposium, ed. S. Sen. Technical Report SS-96-01, 51-56. Menlo Park, CA: AAAI Press.
    • (1996) Adaptation, Coevolution and Learning in Multiagent Systems , pp. 51-56
    • Haynes, T.1    Lau, K.2    Sen, S.3
  • 29
    • 4644369748 scopus 로고    scopus 로고
    • Nash QLearning for general-sum stochastic games
    • Hu, J., and Wellman, M. P. 2003. Nash QLearning for General-Sum Stochastic Games. Journal of Machine Learning Research 4(11): 1039-1069.
    • (2003) Journal of Machine Learning Research , vol.4 , Issue.11 , pp. 1039-1069
    • Hu, J.1    Wellman, M.P.2
  • 30
    • 26444464728 scopus 로고    scopus 로고
    • Special issue on multiagent learning
    • Huhns, M., and Weiss, G., eds. 1998. Special Issue on Multiagent Learning. Machine Learning Journal 33(2-3).
    • (1998) Machine Learning Journal , vol.33 , Issue.2-3
    • Huhns, M.1    Weiss, G.2
  • 31
    • 38149142304 scopus 로고    scopus 로고
    • Half field offense in robocup soccer: A multiagent reinforcement learning case study
    • Lecture Notes in Computer Science 4434 Berlin Springer
    • Kalyanakrishnan, S.; Liu, Y.; and Stone, P. 2006. Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study. In RoboCup 2006: Robot Soccer World Cup XI, Lecture Notes in Computer Science 4434, 72-85. Berlin: Springer
    • (2006) RoboCup 2006: Robot Soccer World Cup XI , pp. 72-85
    • Kalyanakrishnan, S.1    Liu, Y.2    Stone, P.3
  • 32
    • 0001184320 scopus 로고    scopus 로고
    • Animal social learning: Toward a new theoretical approach
    • ed. P. Klopfer, P. Bateson, and N. Thomson. New York: Plenum press
    • Laland, K.; Richerson, P.; and Boyd, R. 1993. Animal Social Learning: Toward a New Theoretical Approach. In Perspectives in Ethology, ed. P. Klopfer, P. Bateson, and N. Thomson. New York: Plenum press.
    • Perspectives in Ethology , pp. 1993
    • Laland, K.1    Richerson, P.2    Boyd, R.3
  • 38
    • 84870801771 scopus 로고    scopus 로고
    • Parallel reinforcement learning algorithm and its application
    • Meng, W., and Han, X. 2009. Parallel Reinforcement Learning Algorithm and Its Application. Computer Engineering and Applications 45(34): 25-28.
    • (2009) Computer Engineering and Applications , vol.45 , Issue.34 , pp. 25-28
    • Meng, W.1    Han, X.2
  • 42
    • 26444601262 scopus 로고    scopus 로고
    • Cooperative multiagent learning: The state of the art
    • Panait, L., and Luke, S. 2005. Cooperative Multiagent Learning: The State of The Art. Autonomous Agents and MultiAgent Systems 11(3): 387-434.
    • (2005) Autonomous Agents and MultiAgent Systems , vol.11 , Issue.3 , pp. 387-434
    • Panait, L.1    Luke, S.2
  • 43
    • 41549123971 scopus 로고    scopus 로고
    • Theoretical advantages of lenient learners: An evolutionary game theoretic perspective
    • Panait, L.; Tuyls, K.; and Luke, S. 2008. Theoretical Advantages of Lenient Learners: An Evolutionary Game Theoretic Perspective. Journal of Machine Learning Research 9: 423-457
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 423-457
    • Panait, L.1    Tuyls, K.2    Luke, S.3
  • 44
    • 0029311891 scopus 로고
    • Coevolutionary computation
    • Paredis, J. 1995. Coevolutionary Computation. Artificial Life 2(4): 355-375.
    • (1995) Artificial Life , vol.2 , Issue.4 , pp. 355-375
    • Paredis, J.1
  • 46
  • 48
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost, F., and Kolluri, V. 1999. A Survey of Methods for Scaling Up Inductive Algorithms. Data Mining and Knowledge Discovery 3(2): 131-169.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 50
    • 84864064043 scopus 로고    scopus 로고
    • Natural actor-critic for road traffic optimisation
    • Cambridge, MA: The MIT Press
    • Richter, S.; Aberdeen, D.; and Yu, J. 2006. Natural Actor-Critic for Road Traffic Optimisation. In Neural Information Processing Systems, volume 18, 1169-1176. Cambridge, MA: The MIT Press.
    • (2006) Neural Information Processing Systems , vol.18 , pp. 1169-1176
    • Richter, S.1    Aberdeen, D.2    Yu, J.3
  • 51
    • 0001842882 scopus 로고    scopus 로고
    • Learning in multiagent systems
    • ed. G. Weiss. Cambridge, MA: The MIT Press
    • Sen, S., and Weiss, G. 1999. Learning in Multiagent Systems. In Multiagent Systems, ed. G. Weiss. Cambridge, MA: The MIT Press. 259-298.
    • (1999) Multiagent Systems , pp. 259-298
    • Sen, S.1    Weiss, G.2
  • 53
    • 84876117936 scopus 로고    scopus 로고
    • Papers from the 1996 Spring Symposium. Technical Report SS-96-01. Menlo Park, CA: AAAI Press
    • Sen, S., ed. 1996. Adaptation, Coevolution and Learning in Multiagent Systems. Papers from the 1996 Spring Symposium. Technical Report SS-96-01. Menlo Park, CA: AAAI Press.
    • (1996) Adaptation, Coevolution and Learning in Multiagent Systems
    • Sen, S.1
  • 54
    • 34147161536 scopus 로고    scopus 로고
    • If multiagent learning is the answer, what is the question?
    • Shoham, Y.; Powers, R.; and Grenager, T. 2007. If Multiagent Learning Is the Answer, What Is the Question? Artificial Intelligence 171(7): 365-377.
    • (2007) Artificial Intelligence , vol.171 , Issue.7 , pp. 365-377
    • Shoham, Y.1    Powers, R.2    Grenager, T.3
  • 56
    • 0002576490 scopus 로고
    • What is collaborative learning?
    • ed. A. Goodsell, M. Maher, V. Tinto, B. L. Smith, and J. MacGregor University Park, PA: National Center on Postsecondary Teaching, Learning, and Assessment, Pennsylvania State University.
    • Smith, B. L., and Gregor, J. T. 1992. What Is Collaborative Learning? In Collaborative Learning: A Sourcebook for Higher Education, ed. A. Goodsell, M. Maher, V. Tinto, B. L. Smith, and J. MacGregor, 1-49. University Park, PA: National Center on Postsecondary Teaching, Learning, and Assessment, Pennsylvania State University.
    • (1992) Collaborative Learning: A Sourcebook for Higher Education , pp. 1-49
    • Smith, B.L.1    Gregor, J.T.2
  • 57
    • 0023399143 scopus 로고
    • Massive parallelism for artificial intelligence
    • Steels, L. 1987. Massive Parallelism for Artificial Intelligence. Microprocessing and Microprogramming 21(1-5): 17-19.
    • (1987) Microprocessing and Microprogramming , vol.21 , Issue.1-5 , pp. 17-19
    • Steels, L.1
  • 58
    • 84876158300 scopus 로고
    • Artificial intelligence and complex dynamics
    • Amsterdam, The Netherlands: North Hollad
    • Steels, L. 1988. Artificial Intelligence and Complex Dynamics. In Concepts and Techniques of Knowledge-Based Systems. Amsterdam, The Netherlands: North Hollad.
    • (1988) Concepts and Techniques of Knowledge-Based Systems
    • Steels, L.1
  • 59
    • 0003369098 scopus 로고    scopus 로고
    • Self-organising vocabularies
    • Cambridge, MA: The MIT Press, Cambridge
    • Steels, L. 1996. Self-Organising Vocabularies. In Proceedings of Artificial Life, Volume V. Cambridge, MA: The MIT Press, Cambridge.
    • (1996) Proceedings of Artificial Life, Volume v
    • Steels, L.1
  • 60
    • 0034205975 scopus 로고    scopus 로고
    • Multiagent systems: A survey from a machine learning perspective
    • Stone, P., and Veloso, M. 2000. Multiagent Systems: A Survey from a Machine Learning Perspective. Autonomous Robots 8(3): 345-383.
    • (2000) Autonomous Robots , vol.8 , Issue.3 , pp. 345-383
    • Stone, P.1    Veloso, M.2
  • 61
    • 34249024789 scopus 로고    scopus 로고
    • Multiagent learning is not the answer. it is the question
    • Stone, P. 2007. Multiagent Learning Is Not the Answer. It Is the Question. Artificial Intelligence 171(7): 402-405.
    • (2007) Artificial Intelligence , vol.171 , Issue.7 , pp. 402-405
    • Stone, P.1
  • 63
    • 85152198941 scopus 로고
    • Multiagent reinforcement learning: Independent versus cooperative agents
    • San Francisco: Morgan Kaufmann
    • Tan, M. 1993. Multiagent Reinforcement Learning: Independent Versus Cooperative Agents. In Proceedings of the Tenth International Conference on Machine Learning, 330- 337. San Francisco: Morgan Kaufmann.
    • (1993) Proceedings of the Tenth International Conference on Machine Learning , pp. 330-337
    • Tan, M.1
  • 64
    • 68949157375 scopus 로고    scopus 로고
    • Transfer learning for reinforcement learning domains: A survey
    • Taylor, M. E., and Stone, P. 2009. Transfer Learning for Reinforcement Learning Domains: A Survey. Journal of Machine Learning Research 10(1): 1633-1685.
    • (2009) Journal of Machine Learning Research , vol.10 , Issue.1 , pp. 1633-1685
    • Taylor, M.E.1    Stone, P.2
  • 65
    • 79960138803 scopus 로고    scopus 로고
    • An introduction to inter-agent transfer for reinforcement learning
    • Taylor, M. E., and Stone, P. 2011. An Introduction to Inter-Agent Transfer for Reinforcement Learning. AI Magazine 32(1): 15- 34.
    • (2011) AI Magazine , vol.32 , Issue.1 , pp. 15-34
    • Taylor, M.E.1    Stone, P.2
  • 67
    • 28544446213 scopus 로고    scopus 로고
    • Evolutionary game theory and multiagent reinforcement learning
    • Tuyls, K., and Nowe, A. 2005. Evolutionary Game Theory and Multiagent Reinforcement Learning. The Knowledge Engineering Review 20(1): 63-90.
    • (2005) The Knowledge Engineering Review , vol.20 , Issue.1 , pp. 63-90
    • Tuyls, K.1    Nowe, A.2
  • 68
    • 34249064148 scopus 로고    scopus 로고
    • What evolutionary game theory tells us about multiagent learning
    • Tuyls, K., and Parsons, S. 2007. What Evolutionary Game Theory Tells Us About Multiagent Learning. Artificial Intelligence 171(7): 406-416.
    • (2007) Artificial Intelligence , vol.171 , Issue.7 , pp. 406-416
    • Tuyls, K.1    Parsons, S.2
  • 72
    • 0004049895 scopus 로고
    • Ph.D. Dissertation, Cambridge University, Cambridge, UK
    • Watkins, C. 1989. Learning with Delayed Rewards. Ph.D. Dissertation, Cambridge University, Cambridge, UK.
    • (1989) Learning with Delayed Rewards
    • Watkins, C.1
  • 75
    • 0042250903 scopus 로고    scopus 로고
    • Adaptation and learning in multiagent systems: Some remarks and a bibliography
    • of Lecture Notes in Artificial Intelligence, ed. G. Weiss and S. Sen, S. Berlin: Springer-Verlag
    • Weiss, G. 1996. Adaptation and Learning in Multiagent Systems: Some Remarks and a Bibliography. In Adaption and Learning in Multiagent Systems, volume 1042 of Lecture Notes in Artificial Intelligence, ed. G. Weiss and S. Sen, S. Berlin: Springer-Verlag.
    • (1996) Adaption and Learning in Multiagent Systems , vol.1042
    • Weiss, G.1
  • 79
    • 0003782395 scopus 로고    scopus 로고
    • of Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag
    • Weiss, G., and Sen, S., eds. 1996. Adaption and Learning in Multiagent Systems, volume 1042 of Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag.
    • (1996) Adaption and Learning in Multiagent Systems , vol.1042
    • Weiss, G.1    Sen, S.2
  • 83
    • 0001309161 scopus 로고    scopus 로고
    • Optimal payoff functions for members of collectives
    • Wolpert, D. H., and Tumer, K. 2001. Optimal Payoff Functions for Members of Collectives. Advances in Complex Systems 4(2/3): 265-279.
    • (2001) Advances in Complex Systems , vol.4 , Issue.2-3 , pp. 265-279
    • Wolpert, D.H.1    Tumer, K.2
  • 84
    • 65149100003 scopus 로고    scopus 로고
    • Multirobot systems with agent-based reinforcement learning: Evolution, opportunities and challenges
    • Yang, E., and Gu, D. 2009. Multirobot Systems with Agent-Based Reinforcement Learning: Evolution, Opportunities and Challenges. International Journal on Modelling, Identification and Control 6(4): 271-286.
    • (2009) International Journal on Modelling, Identification and Control , vol.6 , Issue.4 , pp. 271-286
    • Yang, E.1    Gu, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.