메뉴 건너뛰기




Volumn 33, Issue , 2008, Pages 521-549

A multiagent reinforcement learning algorithm with non-linear dynamics

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; DIFFERENTIAL EQUATIONS; DYNAMICS; FERTILIZERS; GAME THEORY; INTELLIGENT AGENTS; MACHINE LEARNING; MULTI AGENT SYSTEMS; REINFORCEMENT LEARNING;

EID: 70350699723     PISSN: None     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.2628     Document Type: Article
Times cited : (86)

References (21)
  • 5
    • 35248823118 scopus 로고    scopus 로고
    • Generalized multiagent learning with performance bound
    • Banerjee, B., & Peng, J. (2007). Generalized multiagent learning with performance bound. Autonomous Agents and Multiagent Systems, 15(3), 281-312.
    • (2007) Autonomous Agents and Multiagent Systems , vol.15 , Issue.3 , pp. 281-312
    • Banerjee, B.1    Peng, J.2
  • 8
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning rate. Artificial Intelligence, 136(2), 215-250.
    • (2002) Artificial Intelligence , vol.136 , Issue.2 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 11
    • 34147159616 scopus 로고    scopus 로고
    • AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents
    • Conitzer, V., & Sandholm, T. (2007). AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents. Machine Learning, 67(1-2), 23-43.
    • (2007) Machine Learning , vol.67 , Issue.1-2 , pp. 23-43
    • Conitzer, V.1    Sandholm, T.2
  • 12
    • 31144432283 scopus 로고    scopus 로고
    • Cooperative information sharing to improve distributed learning in multi-agent systems
    • Dutta, P. S., Jennings, N. R., & Moreau, L. (2005). Cooperative information sharing to improve distributed learning in multi-agent systems. Journal of Artificial Intelligence Research, 24, 407-463.
    • (2005) Journal of Artificial Intelligence Research , vol.24 , pp. 407-463
    • Dutta, P.S.1    Jennings, N.R.2    Moreau, L.3
  • 13
    • 4644369748 scopus 로고    scopus 로고
    • Nash Q-learning for general-sum stochastic games
    • Hu, J., & Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic games. Journal of Machine Learning Research, 4, 1039-1069.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 1039-1069
    • Hu, J.1    Wellman, M.P.2
  • 14
    • 0004178386 scopus 로고    scopus 로고
    • Prentice-Hall, Upper Saddle River, NJ, USA
    • Khalil, H. K. (2002). Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, USA.
    • (2002) Nonlinear Systems
    • Khalil, H.K.1
  • 15
    • 0001547175 scopus 로고    scopus 로고
    • Value-function reinforcement learning in Markov games
    • Littman, M. (2001). Value-function reinforcement learning in Markov games. Cognitive Systems Research, 2(12), 55-66.
    • (2001) Cognitive Systems Research , vol.2 , Issue.12 , pp. 55-66
    • Littman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.