메뉴 건너뛰기




Volumn 5, Issue , 2011, Pages

Synaptic scaling in combination with many generic plasticity mechanisms stabilizes circuit connectivity

Author keywords

Homeostasis; Neural network; Plasticity; Synapse

Indexed keywords

NEURAL NETWORKS; PLASTICITY; RECONFIGURABLE HARDWARE;

EID: 84861214556     PISSN: None     EISSN: 16625188     Source Type: Journal    
DOI: 10.3389/fncom.2011.00047     Document Type: Article
Times cited : (73)

References (61)
  • 1
    • 0033667165 scopus 로고    scopus 로고
    • Synaptic plasticity: Taming the beast
    • Abbott, L. F., and Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nat. Neurosci. (Suppl.) 3, 1178-1183.
    • (2000) Nat. Neurosci , vol.3 , pp. 1178-1183
    • Abbott, L.F.1    Nelson, S.B.2
  • 2
    • 0029984320 scopus 로고    scopus 로고
    • Metaplasticity: The plasticity of synaptic plasticity
    • Abraham, W. C., and Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126-130.
    • (1996) Trends Neurosci , vol.19 , pp. 126-130
    • Abraham, W.C.1    Bear, M.F.2
  • 3
    • 33745896247 scopus 로고    scopus 로고
    • A dynamic spatial gradient of Hebbian learning in dendrites
    • Bender, V. A., and Feldman, D. E. (2006). A dynamic spatial gradient of Hebbian learning in dendrites. Neuron 51, 153-155.
    • (2006) Neuron , vol.51 , pp. 153-155
    • Bender, V.A.1    Feldman, D.E.2
  • 4
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464-10472.
    • (1998) J. Neurosci , vol.18 , pp. 10464-10472
    • Bi, G.Q.1    Poo, M.M.2
  • 5
    • 33846493795 scopus 로고
    • A model of neocortex. Netw. Comput
    • Bienenstock, E. L. (1995). A model of neocortex. Netw. Comput. Neural Syst. 6, 179-224.
    • (1995) Neural Syst , vol.6 , pp. 179-224
    • Bienenstock, E.L.1
  • 6
    • 0020074887 scopus 로고
    • Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex
    • Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32-48.
    • (1982) J. Neurosci , vol.2 , pp. 32-48
    • Bienenstock, E.L.1    Cooper, L.N.2    Munro, P.W.3
  • 7
    • 0015799240 scopus 로고
    • Longlasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path
    • Bliss, T., and Lomo, T. (1973). Longlasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331-356.
    • (1973) J. Physiol , vol.232 , pp. 331-356
    • Bliss, T.1    Lomo, T.2
  • 9
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186-198.
    • (2009) Nat. Rev. Neurosci , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 10
    • 7244223157 scopus 로고    scopus 로고
    • Cortical rewiring and information storage
    • Chklovskii, D. B., Mel, B. W., and Svoboda, K. (2004). Cortical rewiring and information storage. Nature 431, 782-788.
    • (2004) Nature , vol.431 , pp. 782-788
    • Chklovskii, D.B.1    Mel, B.W.2    Svoboda, K.3
  • 11
    • 77649152514 scopus 로고    scopus 로고
    • Connectivity reflects coding: A model of voltagebased STDP with homeostasis
    • Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects coding: a model of voltagebased STDP with homeostasis. Nat. Neurosci. 13, 344-352.
    • (2010) Nat. Neurosci , vol.13 , pp. 344-352
    • Clopath, C.1    Büsing, L.2    Vasilaki, E.3    Gerstner, W.4
  • 12
    • 0033360297 scopus 로고    scopus 로고
    • Plasticity in the intrinsic excitability of cortical pyramidal neurons
    • Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature 2, 515-520.
    • (1999) Nature , vol.2 , pp. 515-520
    • Desai, N.S.1    Rutherford, L.C.2    Turrigiano, G.G.3
  • 13
    • 0033518170 scopus 로고    scopus 로고
    • Stable propagation of synchronous spiking in cortical neural networks
    • Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529-533.
    • (1999) Nature , vol.402 , pp. 529-533
    • Diesmann, M.1    Gewaltig, M.-O.2    Aertsen, A.3
  • 14
    • 0027195617 scopus 로고
    • Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus
    • Dudek, S., and Bear, M. (1993). Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910-2918.
    • (1993) J. Neurosci , vol.13 , pp. 2910-2918
    • Dudek, S.1    Bear, M.2
  • 16
    • 15044340596 scopus 로고    scopus 로고
    • Spike-timing-dependent synaptic plasticity depends on dendritic location
    • Frömke, R. C., Poo, M.-M., and Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434, 221-225.
    • (2005) Nature , vol.434 , pp. 221-225
    • Frömke, R.C.1    Poo, M.-M.2    Dan, Y.3
  • 17
    • 0029821128 scopus 로고    scopus 로고
    • A neuronal learning rule for sub-millisecond temporal coding
    • Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76-78.
    • (1996) Nature , vol.383 , pp. 76-78
    • Gerstner, W.1    Kempter, R.2    Van Hemmen, J.L.3    Wagner, H.4
  • 19
    • 0037868943 scopus 로고    scopus 로고
    • Learning input correlations through nonlinear temporally asymmetric hebbian plasticity
    • Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. J. Neurosci. 23, 3697-3714
    • (2003) J. Neurosci , vol.23 , pp. 3697-3714
    • Gütig, R.1    Aharonov, R.2    Rotter, S.3    Sompolinsky, H.4
  • 20
    • 17844385319 scopus 로고    scopus 로고
    • Neural signatures of cell assembly organization. Nat
    • Harris, K. D. (2005). Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6, 399-407.
    • (2005) Rev. Neurosci , vol.6 , pp. 399-407
    • Harris, K.D.1
  • 22
    • 0030229039 scopus 로고    scopus 로고
    • Learning synfire chains: Turning noise into signal
    • Hertz, J., and Prügel-Bennett, A. (1996). Learning synfire chains: turning noise into signal. Int. J. Neural Syst. 7, 445-450.
    • (1996) Int. J. Neural Syst , vol.7 , pp. 445-450
    • Hertz, J.1    Prügel-Bennett, A.2
  • 23
    • 0041353445 scopus 로고    scopus 로고
    • Pyramidal cell communication within local networks in layer 2/3 of rat neocortex
    • Holmgren, C., Harkany, T., Sevennenfors, B., and Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551, 139-153.
    • (2003) J. Physiol , vol.551 , pp. 139-153
    • Holmgren, C.1    Harkany, T.2    Sevennenfors, B.3    Zilberter, Y.4
  • 24
    • 69249100460 scopus 로고    scopus 로고
    • Experience-dependent structural synaptic plasticity in the mammalian brain. Nat
    • Holtmaat, A., and Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647-658.
    • (2009) Rev. Neurosci , vol.10 , pp. 647-658
    • Holtmaat, A.1    Svoboda, K.2
  • 25
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554-2558.
    • (1982) Proc. Natl. Acad. Sci. U.S.A. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 26
    • 0742268989 scopus 로고    scopus 로고
    • Simple model of spiking neurons
    • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569-1572.
    • (2003) IEEE Trans. Neural Netw , vol.14 , pp. 1569-1572
    • Izhikevich, E.M.1
  • 27
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons
    • Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063-1070.
    • (2004) IEEE Trans. Neural Netw , vol.15 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 28
    • 33644898137 scopus 로고    scopus 로고
    • Polychronization: Computation with spikes
    • Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural Comput. 18, 245-282.
    • (2006) Neural Comput , vol.18 , pp. 245-282
    • Izhikevich, E.M.1
  • 30
    • 40349098772 scopus 로고    scopus 로고
    • Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity
    • Jun, J. K., and Jin, D. Z. (2007). Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PLoS ONE 2, e723. doi:10.1371/journal.pone.0000723
    • (2007) Plos ONE , vol.2
    • Jun, J.K.1    Jin, D.Z.2
  • 31
    • 34548037876 scopus 로고    scopus 로고
    • Long term synaptic plasticity in hippocampal interneurons. Nat
    • Kullmann, D. M., and Lamsa, K. P. (2007). Long term synaptic plasticity in hippocampal interneurons. Nat. Rev. Neurosci. 8, 687-699.
    • (2007) Rev. Neurosci , vol.8 , pp. 687-699
    • Kullmann, D.M.1    Lamsa, K.P.2
  • 32
    • 84870563850 scopus 로고    scopus 로고
    • Limits to the development of feed-forward structures in large recurrent neuronal networks. Front. Comput
    • Kunkel, S., Diesmann, M., and Morrison, A. (2010). Limits to the development of feed-forward structures in large recurrent neuronal networks. Front. Comput. Neurosci. 4:160. doi:10.3389/fncom.2010.00160
    • (2010) Neurosci , vol.4
    • Kunkel, S.1    Diesmann, M.2    Morrison, A.3
  • 33
    • 70350336841 scopus 로고    scopus 로고
    • Embedding multiple trajectories in simulated recurrent neural networks in self-organizing manner
    • Liu, J., and Buonomano, D. (2009). Embedding multiple trajectories in simulated recurrent neural networks in self-organizing manner. J. Neurosci. 29, 13172-13181.
    • (2009) J. Neurosci , vol.29 , pp. 13172-13181
    • Liu, J.1    Buonomano, D.2
  • 34
    • 0031012390 scopus 로고    scopus 로고
    • A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons
    • Magee, J. C., and Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209-213.
    • (1997) Science , vol.275 , pp. 209-213
    • Magee, J.C.1    Johnston, D.2
  • 35
    • 0031012615 scopus 로고    scopus 로고
    • Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
    • Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213-215.
    • (1997) Science , vol.275 , pp. 213-215
    • Markram, H.1    Lübke, J.2    Frotscher, M.3    Sakmann, B.4
  • 36
    • 0036885939 scopus 로고    scopus 로고
    • Self-regulation mechanism of temporally asymmetric Hebbian plasticity
    • Matsumoto, N., and Okada, M. (2002). Self-regulation mechanism of temporally asymmetric Hebbian plasticity. Neural Comput. 14, 2883-2902.
    • (2002) Neural Comput , vol.14 , pp. 2883-2902
    • Matsumoto, N.1    Okada, M.2
  • 37
    • 0002727735 scopus 로고
    • The role of constraints in Hebbian learning
    • Miller, K. D., and MacKay, D. J. C. (1994). The role of constraints in Hebbian learning. Neural Comput. 6, 100-126.
    • (1994) Neural Comput , vol.6 , pp. 100-126
    • Miller, K.D.1    Mackay, D.J.C.2
  • 38
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • Oja, E. (1982). A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267-273
    • (1982) J. Math. Biol , vol.15 , pp. 267-273
    • Oja, E.1
  • 39
    • 33748898872 scopus 로고    scopus 로고
    • Triplets of spikes in a model of spike-timing-dependent plasticity
    • Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model of spike-timing-dependent plasticity. J. Neurosci. 26, 9673-9682.
    • (2006) J. Neurosci , vol.26 , pp. 9673-9682
    • Pfister, J.-P.1    Gerstner, W.2
  • 40
    • 0035053796 scopus 로고    scopus 로고
    • Impact of active dendrites and structural plasticity on the memory capacity of neural tissue
    • Poirazi, P., and Mel, B. W. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779-796.
    • (2001) Neuron , vol.29 , pp. 779-796
    • Poirazi, P.1    Mel, B.W.2
  • 41
    • 33845891860 scopus 로고    scopus 로고
    • The endurance and selectivity of spatial patterns of longterm potentiation/depression in dendrites under homeostatic synaptic plasticity
    • Rabinowitch, I., and Segev, I. (2006). The endurance and selectivity of spatial patterns of longterm potentiation/depression in dendrites under homeostatic synaptic plasticity. J. Neurosci. 26, 13474-13484.
    • (2006) J. Neurosci , vol.26 , pp. 13474-13484
    • Rabinowitch, I.1    Segev, I.2
  • 42
    • 47849090741 scopus 로고    scopus 로고
    • Two opposing plasticity mechanisms pulling a single synapse
    • Rabinowitch, I., and Segev, I. (2008). Two opposing plasticity mechanisms pulling a single synapse. Trends Neurosci. 31, 377-383.
    • (2008) Trends Neurosci , vol.31 , pp. 377-383
    • Rabinowitch, I.1    Segev, I.2
  • 43
    • 77955998868 scopus 로고    scopus 로고
    • Hebbian plasticity and homeostasis in a model of hypercolumn of the visual cortex
    • Rossi Pool, R., and Mato, G. (2010). Hebbian plasticity and homeostasis in a model of hypercolumn of the visual cortex. Neural Comput. 22, 1837-1859.
    • (2010) Neural Comput , vol.22 , pp. 1837-1859
    • Rossi Pool, R.1    Mato, G.2
  • 44
    • 77954576671 scopus 로고    scopus 로고
    • Independent component analysis in spiking neurons
    • Savin, C., Joshi, P., and Triesch, J. (2010). Independent component analysis in spiking neurons. PLoS Comput. Biol. 6, e1000757. doi:10.1371/journal.pcbi.1000757
    • (2010) Plos Comput. Biol , vol.6
    • Savin, C.1    Joshi, P.2    Triesch, J.3
  • 46
    • 0035924588 scopus 로고    scopus 로고
    • Rate, timing, and cooperativity jointly determine cortical synaptic plasticity
    • Sjöström, P., Turrigiano, G., and Nelson, S. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149-1164.
    • (2001) Neuron , vol.32 , pp. 1149-1164
    • Sjöström, P.1    Turrigiano, G.2    Nelson, S.3
  • 47
    • 33745902544 scopus 로고    scopus 로고
    • A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons
    • Sjöström, P. J., and Häusser, M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227-238.
    • (2006) Neuron , vol.51 , pp. 227-238
    • Sjöström, P.J.1    Häusser, M.2
  • 48
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hebbian learning through spike-timingdependent synaptic plasticity. Nat
    • Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through spike-timingdependent synaptic plasticity. Nat. Neurosci. 3, 919-926.
    • (2000) Neurosci , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.D.2    Abbott, L.F.3
  • 49
    • 18044383304 scopus 로고    scopus 로고
    • Highly nonrandom features of synaptic connectivity in local cortical circuits
    • Song, S., Sjöström, P. J., Reigl, M., Nelson, S. B., and Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68. doi:10.1371/journal.pbio.0030068
    • (2005) Plos Biol , vol.3
    • Song, S.1    Sjöström, P.J.2    Reigl, M.3    Nelson, S.B.4    Chklovskii, D.B.5
  • 51
    • 13844284450 scopus 로고    scopus 로고
    • Motifs in brain networks
    • Sporns, O., and Kötter, R. (2004). Motifs in brain networks. PLoS Biol. 2, e369. doi:10.1371/journal.pbio.0020369
    • (2004) Plos Biol , vol.2
    • Sporns, O.1    Kötter, R.2
  • 52
    • 77950471850 scopus 로고    scopus 로고
    • Selforganized adaptation of a simple neural circuit enables complex robot behaviour
    • Steingrube, S., Timme, M., Wörgötter, F., and Manoonpong, P. (2010). Selforganized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224-230
    • (2010) Nat. Phys , vol.6 , pp. 224-230
    • Steingrube, S.1    Timme, M.2    Wörgötter, F.3    Manoonpong, P.4
  • 53
    • 33646199097 scopus 로고    scopus 로고
    • Synaptic scaling mediated by glial TNF-α
    • Stellwagen, D., and Malenka, R. C. (2006). Synaptic scaling mediated by glial TNF-α. Nature 440, 1054-1059
    • (2006) Nature , vol.440 , pp. 1054-1059
    • Stellwagen, D.1    Malenka, R.C.2
  • 54
    • 78651233302 scopus 로고    scopus 로고
    • Self-organized criticality in developing neuronal networks
    • Tetzlaff, C., Okujeni, S., Egert, U., Wörgötter, F., and Butz, M. (2010). Self-organized criticality in developing neuronal networks. PLoS Comput. Biol. 6, e1001013. doi:10.1371/journal.pcbi.1001013
    • (2010) Plos Comput. Biol , vol.6
    • Tetzlaff, C.1    Okujeni, S.2    Egert, U.3    Wörgötter, F.4    Butz, M.5
  • 55
    • 34547245559 scopus 로고    scopus 로고
    • Revealing network connectivity from response dynamics
    • Timme, M. (2007). Revealing network connectivity from response dynamics. Phys. Rev. Lett. 98, 224101.
    • (2007) Phys. Rev. Lett , vol.98
    • Timme, M.1
  • 56
    • 34247243264 scopus 로고    scopus 로고
    • Synergies between intrinsic and synaptic plasticity mechanisms
    • Triesch, J. (2007). Synergies between intrinsic and synaptic plasticity mechanisms. Neural Comput. 19, 885-909.
    • (2007) Neural Comput , vol.19 , pp. 885-909
    • Triesch, J.1
  • 57
    • 0032567928 scopus 로고    scopus 로고
    • Activity-dependent scaling of quantal amplitude in neocortical neurons
    • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892-896
    • (1998) Nature , vol.391 , pp. 892-896
    • Turrigiano, G.G.1    Leslie, K.R.2    Desai, N.S.3    Rutherford, L.C.4    Nelson, S.B.5
  • 58
    • 0032215604 scopus 로고    scopus 로고
    • Thinking globally, acting locally: AMPA receptor turnover and synaptic strength
    • Turrigiano, G. G., and Nelson, S. B. (1998). Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron 21, 933-935.
    • (1998) Neuron , vol.21 , pp. 933-935
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 59
    • 0034131101 scopus 로고    scopus 로고
    • Hebb and homeostasis in neuronal plasticity
    • Turrigiano, G. G., and Nelson, S. B. (2000). Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 258-364.
    • (2000) Curr. Opin. Neurobiol , vol.10 , pp. 258-364
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 60
    • 0742323527 scopus 로고    scopus 로고
    • Homeostatic plasticity in the developing nervous system. Nat
    • Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97-107.
    • (2004) Rev. Neurosci , vol.5 , pp. 97-107
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 61
    • 0034551719 scopus 로고    scopus 로고
    • Stable Hebbian learning from spike-timing dependent plasticity
    • Van Rossum, M. C. W., Bi, G. Q., and Turrigiano, G. G. (2000). Stable Hebbian learning from spike-timing dependent plasticity. J. Neurosci. 20, 8812-8821.
    • (2000) J. Neurosci , vol.20 , pp. 8812-8821
    • Van Rossum, M.C.W.1    Bi, G.Q.2    Turrigiano, G.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.