메뉴 건너뛰기




Volumn 14, Issue 11, 2011, Pages 3611-3621

Solving protein fold prediction problem using fusion of heterogeneous classifiers

Author keywords

Feature extraction; Fusion of heterogeneous classifiers; LogitBoost; Majority voting; Protein fold prediction problem; Random Forest; Rotation Forest

Indexed keywords


EID: 84860179168     PISSN: 13434500     EISSN: 13448994     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (27)

References (34)
  • 2
    • 79952159969 scopus 로고    scopus 로고
    • Fold prediction problem: The application of new physical and physicochemical-based features
    • Dehzangi A., Amnuaisuk S. P., Fold Prediction Problem: The Application of New Physical and Physicochemical-Based Features. Proteins & Peptide Letters, 18 (2011) 174-185.
    • (2011) Proteins & Peptide Letters , vol.18 , pp. 174-185
    • Dehzangi, A.1    Amnuaisuk, S.P.2
  • 3
    • 36448960843 scopus 로고    scopus 로고
    • PFRES: Protein fold classification by using evolutionary information and predicted secondary structure
    • DOI 10.1093/bioinformatics/btm475
    • Chen K., Kurgan L., PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics, 23 (2007) 2843-2850. (Pubitemid 350162889)
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2843-2850
    • Chen, K.1    Kurgan, L.2
  • 4
    • 43349094032 scopus 로고    scopus 로고
    • Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
    • DOI 10.1093/bioinformatics/btn112
    • Damoulas T., Girolami M. A., Probabilistic multi-class multi-kernel learning: on protein fold recognitiori and remote homology detection. Bioinformatics, 24 (2008) 1264-1270. (Pubitemid 351659623)
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1264-1270
    • Damoulas, T.1    Girolami, M.A.2
  • 5
    • 68149176631 scopus 로고    scopus 로고
    • Prediction of protein folds: Extraction of new features, dimensionality reduction, and fusion of heterogeneous classifiers
    • Ghanty P., Pal N. R., Prediction of Protein Folds: Extraction of New Features, Dimensionality Reduction, and Fusion of Heterogeneous Classifiers, IEEE Transaction on Nanobioscience, 8 (2009) 100-110.
    • (2009) IEEE Transaction on Nanobioscience , vol.8 , pp. 100-110
    • Ghanty, P.1    Pal, N.R.2
  • 6
    • 36949013631 scopus 로고    scopus 로고
    • Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs
    • DOI 10.1093/bioinformatics/btm527
    • Shamim M. T. A., Anwaruddin M., Nagarajara H. A., Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Bioinformatics, 23 (2007) 3320-3327. (Pubitemid 350238884)
    • (2007) Bioinformatics , vol.23 , Issue.24 , pp. 3320-3327
    • Shamim, M.T.A.1    Anwaruddin, M.2    Nagarajaram, H.A.3
  • 7
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen H. B., Chou K. C., Ensemble Classifier for Protein Fold Pattern Recognition. Bioinformatics, 22 (2006) 1717-1722.
    • (2006) Bioinformatics , vol.22 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 8
    • 2442682027 scopus 로고    scopus 로고
    • Protein structure and fold prediction using tree-augmented naive Bayesian classifier
    • Chinnasamy A., Sung W. K., Mittal A., Protein structure and fold prediction using tree-augmented naive Bayesian classifier. Pacific Symposium on Biocomputing, 2004, pp. 387-398.
    • (2004) Pacific Symposium on Biocomputing , pp. 387-398
    • Chinnasamy, A.1    Sung, W.K.2    Mittal, A.3
  • 9
    • 32544440611 scopus 로고    scopus 로고
    • Ensemble of classifiers for protein fold recognition
    • DOI 10.1016/j.neucom.2005.08.006, PII S0925231205002985
    • Nanni L., Ensemble of classifiers for protein fold recognition. New Issues in Neurocomputing: 13th European Symposium on Artificial Neural Networks, 2006, pp. 850-853. (Pubitemid 43230389)
    • (2006) Neurocomputing , vol.69 , Issue.7-9 SPEC. ISS. , pp. 850-853
    • Nanni, L.1
  • 12
    • 78650005945 scopus 로고    scopus 로고
    • Using random forest for protein fold prediction problem: An empirical study
    • Dehzangi A., Amnuaisuk S. P., Dehzangi O., Using Random Forest for Protein Fold Prediction Problem: An Empirical Study". J. Info. Sci. & Engineering, 26 (2010) 1941-1956.
    • (2010) J. Info. Sci. & Engineering , vol.26 , pp. 1941-1956
    • Dehzangi, A.1    Amnuaisuk, S.P.2    Dehzangi, O.3
  • 16
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding C., Dubchak I., Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17 (2001) 349-358. (Pubitemid 32421929)
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 19
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman L., Random Forest. Machine learning. 45 (2001) 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 20
    • 77952317299 scopus 로고    scopus 로고
    • Implementation of Breiman's random forest machine learning algorithm
    • Livingston F., Implementation of Breiman's Random Forest Machine Learning Algorithm. Machine Learning. ECE591Q, 2005.
    • (2005) Machine Learning. ECE591Q
    • Livingston, F.1
  • 23
    • 60749095490 scopus 로고    scopus 로고
    • Contextualized recommendation based on reality mining from mobile subscribers
    • Jung, J. J., Lee, H., Choi, K. S.: Contextualized Recommendation Based on Reality Mining from Mobile Subscribers. Cybernetics and Systems, Vol. 40, No. 2, pp. 160-175, 2009.
    • (2009) Cybernetics and Systems , vol.40 , Issue.2 , pp. 160-175
    • Jung, J.J.1    Lee, H.2    Choi, K.S.3
  • 24
    • 58349120794 scopus 로고    scopus 로고
    • Trustworthy knowledge diffusion model based on risk discovery on peer-to-peer networks
    • Jung, J. J.: Trustworthy knowledge diffusion model based on risk discovery on peer-to-peer networks. Expert Systems with Applications, Vol. 36, No. 3, pp. 7123-7128, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 7123-7128
    • Jung, J.J.1
  • 25
    • 67349091813 scopus 로고    scopus 로고
    • Semantic business process integration based on ontology alignment
    • Jung, J. J.: Semantic Business Process Integration Based on Ontology Alignment. Expert Systems with Applications, Vol. 36, No. 8, pp. 11013-11020, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 11013-11020
    • Jung, J.J.1
  • 26
    • 77249167053 scopus 로고    scopus 로고
    • An empirical study on optimizing query transformation on semantic peer-to-peer networks
    • Jung, J. J.: An Empirical Study on Optimizing Query Transformation on Semantic Peer-to-Peer Networks. Journal of Intelligent & Fuzzy Systems, Vol. 21, No. 3, pp. 187-195, 2010.
    • (2010) Journal of Intelligent & Fuzzy Systems , vol.21 , Issue.3 , pp. 187-195
    • Jung, J.J.1
  • 27
    • 77953718006 scopus 로고    scopus 로고
    • Reusing ontology mappings for query segmentation and routing in semantic peer-to-peer environment
    • Jung, J. J.: Reusing Ontology Mappings for Query Segmentation and Routing in Semantic Peer-to-Peer Environment. Information Sciences, Vol. 180, No. 17, pp. 3248-3257, 2010.
    • (2010) Information Sciences , vol.180 , Issue.17 , pp. 3248-3257
    • Jung, J.J.1
  • 28
    • 78549293564 scopus 로고    scopus 로고
    • Integrating social networks for context fusion in mobile service platforms
    • Jung, J. J.: Integrating Social Networks for Context Fusion in Mobile Service Platforms. Journal of Universal Computer Science, Vol. 16, No. 15, pp. 2099-2110, 2010.
    • (2010) Journal of Universal Computer Science , vol.16 , Issue.15 , pp. 2099-2110
    • Jung, J.J.1
  • 29
    • 78049527259 scopus 로고    scopus 로고
    • Service chain-based business alliance formation in service-oriented architecture
    • Jung, J. J.: Service Chain-based Business Alliance Formation in Service-oriented Architecture. Expert Systems with Applications, Vol. 38, No. 3, pp. 2206-2211, 2011.
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 2206-2211
    • Jung, J.J.1
  • 31
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J., Hastie T., Tibshirani R., Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2000), pp. 337-407. (Pubitemid 33227445)
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 33
    • 0028961335 scopus 로고
    • SCOP: A structural classification of proteins database for the investigation of sequences and structures
    • Murzin A. G., Brenner S. E., Chothia C., SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247 (1995) 536-540.
    • (1995) J. Mol. Biol. , vol.247 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Chothia, C.3
  • 34
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., Kohavi R., An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning. 36 (1999) 105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.