메뉴 건너뛰기




Volumn , Issue , 2004, Pages 61-66

Multi-class protein fold recognition using multi-objective evolutionary algorithms

Author keywords

Feature selection; Multi class classification; Multi objective evolutionary algorithm; NSGA II; Protein fold recognition; Support vector machines

Indexed keywords

FEATURE SELECTION; MULTI-CLASS CLASSIFICATION; MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM; NSGA-II; PROTEIN FOLD RECOGNITION (PFR); SUPPORT VECTOR MACHINES (SVM);

EID: 17044402484     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (36)

References (23)
  • 1
    • 84860104962 scopus 로고    scopus 로고
    • Kanpur Genetic Algorithm Laboratory. http : //www.iitk.ac.in/kangal.
  • 2
    • 14944354760 scopus 로고    scopus 로고
    • Multi-class protein fold classification using a new ensemble machine learning approach
    • A. C. Tan, D. Gilbert and Y Deville. Multi-class protein fold classification using a new ensemble machine learning approach. Genome Informatics, 14:206-217, 2003.
    • (2003) Genome Informatics , vol.14 , pp. 206-217
    • Tan, A.C.1    Gilbert, D.2    Deville, Y.3
  • 4
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2):245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 7
    • 9444293630 scopus 로고    scopus 로고
    • Classification of two-class cancer data reliably using evolutionary algorithms
    • Kanpur Genetic Algorithm Lab, India Institute of Technology, Kanpur, February
    • K. Deb and A. R. Reddy. Classification of two-class cancer data reliably using evolutionary algorithms. Technical Report 2003001, Kanpur Genetic Algorithm Lab, India Institute of Technology, Kanpur, February 2003.
    • (2003) Technical Report 2003001
    • Deb, K.1    Reddy, A.R.2
  • 9
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • April
    • C. H. Q. Ding and I. Dubchak. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17(4):349-58, April 2001.
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 12
    • 0032919371 scopus 로고    scopus 로고
    • Protein folds and families:sequence and structure alignments
    • L. Holm and C. Sander. Protein folds and families:sequence and structure alignments. Nucleic Acids Research, 27(1):244-247, 1999.
    • (1999) Nucleic Acids Research , vol.27 , Issue.1 , pp. 244-247
    • Holm, L.1    Sander, C.2
  • 13
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C. W. Hsu and C. J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13:415-425, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 14
    • 17044385913 scopus 로고    scopus 로고
    • Estimating performance gains for voted decision tree
    • N. Indurkhya and S. M. Weiss. Estimating performance gains for voted decision tree. Intelligent Data Analysis, 2(1-4):303-310, 1998.
    • (1998) Intelligent Data Analysis , vol.2 , Issue.1-4 , pp. 303-310
    • Indurkhya, N.1    Weiss, S.M.2
  • 16
    • 0033537993 scopus 로고    scopus 로고
    • Genthreader: An efficient and reliable protein fold recognition method for genomic sequences
    • April
    • D. T. Jones. Genthreader: an efficient and reliable protein fold recognition method for genomic sequences. Journal of Molecular Biology, 287(4):797-815, April 1999.
    • (1999) Journal of Molecular Biology , vol.287 , Issue.4 , pp. 797-815
    • Jones, D.T.1
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 19
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that selects features for pattern classifiers
    • M. Kudo and J. Sklansky. Comparison of algorithms that selects features for pattern classifiers. Pattern Recognition, 33:25-41, 2000.
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 20
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • B. Rost and C. Sander. Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, 232:584-599, 1993.
    • (1993) Journal of Molecular Biology , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 21
    • 34547433475 scopus 로고    scopus 로고
    • Feature analysis and classification of protein secondary structure data
    • Istanbul, Turkey, June
    • S. Y. M. Shi and P. N. Suganthan. Feature analysis and classification of protein secondary structure data. In Internaltional Conference on Artificial Neural Networks, volume 2714, pages 1151-1158, Istanbul, Turkey, June 2003.
    • (2003) Internaltional Conference on Artificial Neural Networks , vol.2714 , pp. 1151-1158
    • Shi, S.Y.M.1    Suganthan, P.N.2
  • 23
    • 0842326624 scopus 로고    scopus 로고
    • Application of svm to predict membrane protein types
    • February
    • Y. Cai, P. Ricardo, C. Jen and K. Chou. Application of svm to predict membrane protein types. Journal of Theoretical Biology, 226(4):373-376, February 2004.
    • (2004) Journal of Theoretical Biology , vol.226 , Issue.4 , pp. 373-376
    • Cai, Y.1    Ricardo, P.2    Jen, C.3    Chou, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.