메뉴 건너뛰기




Volumn 8, Issue 1, 2009, Pages 100-110

Prediction of protein folds: Extraction of new features, dimensionality reduction, and fusion of heterogeneous classifiers

Author keywords

Fusion; Majority voting; Multilayer perceptron (MLP); Online feature selection (OFS); Protein structure prediction; Radial basis function (RBF); Structural classification of proteins (SCOP); Triplets of amino acid composition (trio AAC)

Indexed keywords

FUSION; MAJORITY VOTING; MULTILAYER PERCEPTRON (MLP); ONLINE FEATURE SELECTION (OFS); PROTEIN STRUCTURE PREDICTION; RADIAL BASIS FUNCTION (RBF); STRUCTURAL CLASSIFICATION OF PROTEINS (SCOP); TRIPLETS OF AMINO ACID COMPOSITION (TRIO AAC);

EID: 68149176631     PISSN: 15361241     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNB.2009.2016488     Document Type: Article
Times cited : (59)

References (40)
  • 2
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • B. Rost and C. Sander, "Prediction of protein secondary structure at better than 70% accuracy," J. Mol. Biol., vol. 232, pp. 584-599, 1993.
    • (1993) J. Mol. Biol , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 3
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian and T. J. Sejnowski, "Predicting the secondary structure of globular proteins using neural network models," J. Mol. Biol., vol. 202, pp. 865-884, 1988.
    • (1988) J. Mol. Biol , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 4
    • 14944343430 scopus 로고    scopus 로고
    • Multi-class support vector machines for protein secondary structure prediction
    • M. N. Nguyen and J. C. Rajapakse, "Multi-class support vector machines for protein secondary structure prediction," Genome Informat., vol. 14, pp. 218-227, 2003.
    • (2003) Genome Informat , vol.14 , pp. 218-227
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 5
    • 33644690605 scopus 로고    scopus 로고
    • Predicting protein secondary structure by a support vector machine based on a new coding scheme
    • L.-H. Wang, Y.-F. Li,J.Liu, and H.-B. Zhou, "Predicting protein secondary structure by a support vector machine based on a new coding scheme," Genome Informat., vol. 15, no. 2, pp. 181-190, 2004.
    • (2004) Genome Informat , vol.15 , Issue.2 , pp. 181-190
    • Wang, L.-H.1    Li, Y.-F.2    Liu, J.3    Zhou, H.-B.4
  • 6
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • S. Hua and Z. Sun, "A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach," J. Mol. Biol., vol. 308, pp. 397-407, 2001.
    • (2001) J. Mol. Biol , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 7
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • J. J.Ward, L. J. McGuffin, B.F. Buxton, and D. T.Jones, "Secondary structure prediction with support vector machines," Bioinformatics, vol. 19, no. 13, pp. 1650-1655, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1650-1655
    • Ward, J.J.1    McGuffin, L.J.2    Buxton, B.F.3    Jones, D.T.4
  • 8
    • 24144472663 scopus 로고    scopus 로고
    • Some new features for protein fold prediction
    • N. R. Pal and D. Chakraborty, "Some new features for protein fold prediction," in Proc. ICONIP'03, pp. 1176-1183.
    • Proc. ICONIP'03 , pp. 1176-1183
    • Pal, N.R.1    Chakraborty, D.2
  • 9
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • C. H. Q. Ding and I. Dubchak, "Multi-class protein fold recognition using support vector machines and neural networks," Bioinformatics, vol. 17, no. 4, pp. 349-358, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 10
    • 35248893366 scopus 로고    scopus 로고
    • Recognition of structure classification of protein folding by NN and SVM hierarchical learning architecture
    • I. F. Chung, C. D. Huang, Y. H. Shen, and C. T. Lin, "Recognition of structure classification of protein folding by NN and SVM hierarchical learning architecture," in Proc. ICONIP'03, pp. 1159-1167.
    • Proc. ICONIP'03 , pp. 1159-1167
    • Chung, I.F.1    Huang, C.D.2    Shen, Y.H.3    Lin, C.T.4
  • 11
    • 3042810113 scopus 로고    scopus 로고
    • Hierarchical learning architecture with automated feature selection for multiclass protein fold classification
    • Dec
    • C.-D. Huang, C.-T. Lin, and N. R. Pal, "Hierarchical learning architecture with automated feature selection for multiclass protein fold classification," IEEE Trans. Nanobiosci., vol. 2, no. 4, pp. 221-232, Dec. 2003.
    • (2003) IEEE Trans. Nanobiosci , vol.2 , Issue.4 , pp. 221-232
    • Huang, C.-D.1    Lin, C.-T.2    Pal, N.R.3
  • 12
    • 0038062969 scopus 로고    scopus 로고
    • Support vector machines for protein fold class prediction
    • F. Markowetz, L. Edler, and M. Vingron, "Support vector machines for protein fold class prediction," Biometrical J., vol. 45, no. 3, pp. 377-389, 2003.
    • (2003) Biometrical J , vol.45 , Issue.3 , pp. 377-389
    • Markowetz, F.1    Edler, L.2    Vingron, M.3
  • 14
    • 33745093400 scopus 로고    scopus 로고
    • Prediction of protein structural classes using support vector machines
    • X.-D. Sun and R.-B. Huang, "Prediction of protein structural classes using support vector machines," Amino Acids, vol. 30, no. 4, pp. 469-475, 2006.
    • (2006) Amino Acids , vol.30 , Issue.4 , pp. 469-475
    • Sun, X.-D.1    Huang, R.-B.2
  • 15
    • 0028961335 scopus 로고
    • SCOP: A structural classification of protein database for the investigation of sequence and structures
    • A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, "SCOP: A structural classification of protein database for the investigation of sequence and structures," J. Mol. Biol., vol. 247, pp. 536-540, 1995.
    • (1995) J. Mol. Biol , vol.247 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Hubbard, T.3    Chothia, C.4
  • 16
    • 0033151954 scopus 로고    scopus 로고
    • Recognition of a protein fold in the context of the structural classification of proteins (SCOP) classification
    • I. Dubchak, I. Muchnik, C. Mayor, I. Dralyuk, and S. H. Kim, "Recognition of a protein fold in the context of the structural classification of proteins (SCOP) classification," Proteins: Struct. Funct. Genet., vol. 35, no. 4, pp. 401-407, 1999.
    • (1999) Proteins: Struct. Funct. Genet , vol.35 , Issue.4 , pp. 401-407
    • Dubchak, I.1    Muchnik, I.2    Mayor, C.3    Dralyuk, I.4    Kim, S.H.5
  • 17
    • 14944354760 scopus 로고    scopus 로고
    • Multi-class protein fold classification using a new ensemble machine learning approach
    • A. C. Tan, D. Gilbert, and Y. Deville, "Multi-class protein fold classification using a new ensemble machine learning approach," Genome Informat., vol. 14, pp. 206-217, 2003.
    • (2003) Genome Informat , vol.14 , pp. 206-217
    • Tan, A.C.1    Gilbert, D.2    Deville, Y.3
  • 18
    • 47749094385 scopus 로고    scopus 로고
    • Feature normalization and selection for protein fold recognition
    • O. Okun, "Feature normalization and selection for protein fold recognition," in Proc. 11th Finish Artif. Intell. Conf. (STeP'04), pp. 207-221.
    • Proc. 11th Finish Artif. Intell. Conf. (STeP'04) , pp. 207-221
    • Okun, O.1
  • 20
    • 0001121401 scopus 로고    scopus 로고
    • A connectionist system for feature selection
    • N. R. Pal and K. K. Chintalapudi, "A connectionist system for feature selection," Neural Parallel Sci. Comput., vol. 5, no. 3, pp. 359-381, 1997.
    • (1997) Neural Parallel Sci. Comput , vol.5 , Issue.3 , pp. 359-381
    • Pal, N.R.1    Chintalapudi, K.K.2
  • 21
    • 22144478633 scopus 로고    scopus 로고
    • Machine learning with automated feature selection for multi-class protein fold classifcation
    • C.-D. Huang, S.-F. Liang, C.-T. Lin, and R.-C. Wu, "Machine learning with automated feature selection for multi-class protein fold classifcation," J. Inform. Sci. Eng., vol. 21, pp. 711-720, 2005.
    • (2005) J. Inform. Sci. Eng , vol.21 , pp. 711-720
    • Huang, C.-D.1    Liang, S.-F.2    Lin, C.-T.3    Wu, R.-C.4
  • 22
    • 0005946314 scopus 로고    scopus 로고
    • An overview of classifier fusion methods
    • D. Ruta and B. Gabrys, "An overview of classifier fusion methods," Comput. Inform. Syst., vol. 7, pp. 1-10, 2000.
    • (2000) Comput. Inform. Syst , vol.7 , pp. 1-10
    • Ruta, D.1    Gabrys, B.2
  • 23
    • 0142120457 scopus 로고    scopus 로고
    • Vote counting measures for ensemble classifiers
    • T. Windeatt, "Vote counting measures for ensemble classifiers," Pattern Recog., vol. 36, pp. 2743-2756, 2003.
    • (2003) Pattern Recog , vol.36 , pp. 2743-2756
    • Windeatt, T.1
  • 24
    • 33744983327 scopus 로고    scopus 로고
    • Adaptive fusion and cooperative training for classifier ensembles
    • N. M. Wanas, R. A. Dara, and M. S. Kamel, "Adaptive fusion and cooperative training for classifier ensembles," Pattern Recog., vol. 39, pp. 1781-1794, 2006.
    • (2006) Pattern Recog , vol.39 , pp. 1781-1794
    • Wanas, N.M.1    Dara, R.A.2    Kamel, M.S.3
  • 25
    • 0036501674 scopus 로고    scopus 로고
    • L.I.Kuncheva andR.K.Kountchev, Generating classifier outputs offixed accuracy and diversity, Pattern Recog. Lett., 23, no. 5, pp. 593-600, 2002.
    • L.I.Kuncheva andR.K.Kountchev, "Generating classifier outputs offixed accuracy and diversity," Pattern Recog. Lett., vol. 23, no. 5, pp. 593-600, 2002.
  • 27
    • 0028259890 scopus 로고
    • Decision combination in multiple classifier systems
    • Jan
    • T. K. Ho, J. J. Hull, and S. N. Srihari, "Decision combination in multiple classifier systems," IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 1, pp. 66-75, Jan. 1994.
    • (1994) IEEE Trans. Pattern Anal. Mach. Intell , vol.16 , Issue.1 , pp. 66-75
    • Ho, T.K.1    Hull, J.J.2    Srihari, S.N.3
  • 28
    • 24144433779 scopus 로고    scopus 로고
    • Fusion of classifiers for protein fold recognition
    • L. Nanni, "Fusion of classifiers for protein fold recognition," Neurocomputing, vol. 68, pp. 315-321, 2005.
    • (2005) Neurocomputing , vol.68 , pp. 315-321
    • Nanni, L.1
  • 29
    • 32544440611 scopus 로고    scopus 로고
    • Ensemble of classifiers for protein fold recognition
    • L. Nanni, "Ensemble of classifiers for protein fold recognition," Neurocomputing, vol. 69, pp. 850-853, 2006.
    • (2006) Neurocomputing , vol.69 , pp. 850-853
    • Nanni, L.1
  • 30
    • 33748419615 scopus 로고    scopus 로고
    • A novel ensemble of classifiers for protein fold recognition
    • L. Nanni, "A novel ensemble of classifiers for protein fold recognition," Neurocomputing, vol. 69, pp. 2434-2437, 2006.
    • (2006) Neurocomputing , vol.69 , pp. 2434-2437
    • Nanni, L.1
  • 31
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • H.-B. Shen and K.-C. Chou, "Ensemble classifier for protein fold pattern recognition," Bioinformatics, vol. 22, no. 14, pp. 1717-1722, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1717-1722
    • Shen, H.-B.1    Chou, K.-C.2
  • 32
    • 33947696720 scopus 로고    scopus 로고
    • Majority vote and decision template based ensemble classifiers trained on event related potentials for early diagnosis of Alzheimers's disease
    • N. Stepenosky, D. Green, J. Kounios, C. M. Clark, and R. Polikar, "Majority vote and decision template based ensemble classifiers trained on event related potentials for early diagnosis of Alzheimers's disease," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2006, pp. 901-904.
    • (2006) Proc. IEEE Int. Conf. Acoust., Speech Signal Process , pp. 901-904
    • Stepenosky, N.1    Green, D.2    Kounios, J.3    Clark, C.M.4    Polikar, R.5
  • 38
    • 0020475449 scopus 로고
    • A simple method for displaying the hydropathic character of a protein
    • J. Kyte and R. F. Doolitte, "A simple method for displaying the hydropathic character of a protein," J. Mol. Biol., vol. 157, no. 1, pp. 105-132, 1982.
    • (1982) J. Mol. Biol , vol.157 , Issue.1 , pp. 105-132
    • Kyte, J.1    Doolitte, R.F.2
  • 39
    • 0347881535 scopus 로고    scopus 로고
    • Folding protein models with simple hydrophobic energy function: The fundamental importance of monomer inside/outside segregation
    • A. F. Pereira de Araújo, "Folding protein models with simple hydrophobic energy function: The fundamental importance of monomer inside/outside segregation," Proc. Nat. Acad. Sci. USA, vol. 96, no. 22, pp. 12482-12487, 1999.
    • (1999) Proc. Nat. Acad. Sci. USA , vol.96 , Issue.22 , pp. 12482-12487
    • Pereira de Araújo, A.F.1
  • 40
    • 34249989677 scopus 로고    scopus 로고
    • Feature selection and combination criteria for improving accuracy in protein structure prediction
    • Jun
    • K.-L. Lin, C.-Y. Lin, C.-D. Huang, H.-M. Chang, C.-Y. Yang, C.-T. Lin, C. Y. Tang, and D. F. Hsu, "Feature selection and combination criteria for improving accuracy in protein structure prediction," IEEE Trans. Nanobiosci., vol. 6, no. 2, pp. 186-196, Jun. 2007.
    • (2007) IEEE Trans. Nanobiosci , vol.6 , Issue.2 , pp. 186-196
    • Lin, K.-L.1    Lin, C.-Y.2    Huang, C.-D.3    Chang, H.-M.4    Yang, C.-Y.5    Lin, C.-T.6    Tang, C.Y.7    Hsu, D.F.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.