-
1
-
-
36948999941
-
-
Irvine, CA : University of California, School of Information and Computer Science. Retrieved July 27, 2010, from
-
Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. Irvine, CA : University of California, School of Information and Computer Science. Retrieved July 27, 2010, from
-
(2007)
UCI machine learning repository
-
-
Asuncion, A.1
Newman, D.J.2
-
2
-
-
66549085044
-
Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting
-
Bansal, G., Sinha, A., & Zhao, H. (2008). Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting. Journal of Management Information Systems, 25(3), 315-336.
-
(2008)
Journal of Management Information Systems
, vol.25
, Issue.3
, pp. 315-336
-
-
Bansal, G.1
Sinha, A.2
Zhao, H.3
-
3
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista, G., Prati, M., & Monard, M. (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations: Special Issue on Imbalanced Data Sets, 6(1), 20-29.
-
(2004)
SIGKDD Explorations: Special Issue on Imbalanced Data Sets
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.1
Prati, M.2
Monard, M.3
-
4
-
-
0003802343
-
-
Belmont, CA : Wadsworth.
-
Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. (1984). Classification and regression trees. Belmont, CA : Wadsworth.
-
(1984)
Classification and regression trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.A.3
Stone, C.4
-
5
-
-
24344490308
-
Support vector machines for candidate nodules classification
-
Campadelli, P., Casiraghi, E., & Valentini, G. (2005). Support vector machines for candidate nodules classification. Neurocomputing, 68, 281-288.
-
(2005)
Neurocomputing
, vol.68
, pp. 281-288
-
-
Campadelli, P.1
Casiraghi, E.2
Valentini, G.3
-
6
-
-
19544370525
-
-
Test-cost sensitive naive Bayes classification. Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK
-
Chai, X., Deng, L., Yang, Q., & Ling, C. X. (2004). Test-cost sensitive naive Bayes classification. Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK, 51-58.
-
(2004)
, pp. 51-58
-
-
Chai, X.1
Deng, L.2
Yang, Q.3
Ling, C.X.4
-
7
-
-
0033336136
-
Distributed data mining in credit card fraud detection
-
Chan, P. K., Fan, W., Prodromidis, A. L., & Stolfo, S. J. (1999). Distributed data mining in credit card fraud detection. IEEE Intelligent Systems, 14(6), 67-74.
-
(1999)
IEEE Intelligent Systems
, vol.14
, Issue.6
, pp. 67-74
-
-
Chan, P.K.1
Fan, W.2
Prodromidis, A.L.3
Stolfo, S.J.4
-
8
-
-
79955702502
-
LIBSVM: A library for support vector machines.
-
Software available at
-
Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(27), 1-27. Software available at
-
(2001)
ACM Transactions on Intelligent Systems and Technology
, vol.2
, Issue.27
, pp. 1-27
-
-
Chang, C.-C.1
Lin, C.-J.2
-
9
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
10
-
-
0002106691
-
-
MetaCost: A general method for making classifiers cost-sensitive. Proceedings of the 5th SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA
-
Domingos, P. (1999). MetaCost: A general method for making classifiers cost-sensitive. Proceedings of the 5th SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, 155-164.
-
(1999)
, pp. 155-164
-
-
Domingos, P.1
-
11
-
-
0004708854
-
-
Exploiting the cost (in)sensitivity of decision tree splitting criteria. Proceedings of the 17th International Conference on Machine Learning, San Jose, CA
-
Drummond, C., & Holte, R. C. (2000). Exploiting the cost (in)sensitivity of decision tree splitting criteria. Proceedings of the 17th International Conference on Machine Learning, San Jose, CA, 239-246.
-
(2000)
, pp. 239-246
-
-
Drummond, C.1
Holte, R.C.2
-
13
-
-
84867577175
-
-
The foundations of cost-sensitive learning. Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA
-
Elkan, C. (2001). The foundations of cost-sensitive learning. Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA, 973-978.
-
(2001)
, pp. 973-978
-
-
Elkan, C.1
-
14
-
-
0013316935
-
-
AdaCost: Misclassification cost-sensitive boosting. Proceedings of the 16th International Conference on Machine Learning, Bled, Slovenia
-
Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999). AdaCost: Misclassification cost-sensitive boosting. Proceedings of the 16th International Conference on Machine Learning, Bled, Slovenia, 97-105.
-
(1999)
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.J.2
Zhang, J.3
Chan, P.K.4
-
15
-
-
50549087357
-
PRIE: A system for generating rulelists to maximize ROC performance
-
Fawcett, T. (2008). PRIE: A system for generating rulelists to maximize ROC performance. Data Mining and Knowledge Discovery, 17(2), 207-224.
-
(2008)
Data Mining and Knowledge Discovery
, vol.17
, Issue.2
, pp. 207-224
-
-
Fawcett, T.1
-
16
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
-
Guo, H., & Viktor, H. (2004). Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach. SIGKDD Explorations: Special Issue on Imbalanced Data Sets, 6(1), 30-39.
-
(2004)
SIGKDD Explorations: Special Issue on Imbalanced Data Sets
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.2
-
17
-
-
0003684449
-
-
New York : Springer.
-
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York : Springer.
-
(2001)
The elements of statistical learning: Data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
18
-
-
0035788944
-
-
Data mining techniques to improve forecast accuracy in airline business. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco
-
Hueglin, C., & Vannotti, F. (2001). Data mining techniques to improve forecast accuracy in airline business. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 438-442.
-
(2001)
, pp. 438-442
-
-
Hueglin, C.1
Vannotti, F.2
-
19
-
-
0001201703
-
-
A novelty detection approach to classification. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada
-
Japkowicz, N., Myers, C., & Gluck, M. (1995). A novelty detection approach to classification. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, 518-523.
-
(1995)
, pp. 518-523
-
-
Japkowicz, N.1
Myers, C.2
Gluck, M.3
-
20
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
Kubat, M., Holte, R., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30(2), 195-215.
-
(1998)
Machine Learning
, vol.30
, Issue.2
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
21
-
-
0001972236
-
-
Addressing the curse of imbalanced data sets: One-sided sampling. Proceedings of 14th International Conference on Machine Learning, Nashville, TN
-
Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced data sets: One-sided sampling. Proceedings of 14th International Conference on Machine Learning, Nashville, TN, 179-186.
-
(1997)
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
22
-
-
85161651554
-
-
Data mining for direct marketing: Problems and solutions. Proceedings of 4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York
-
Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions. Proceedings of 4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 73-79.
-
(1998)
, pp. 73-79
-
-
Ling, C.X.1
Li, C.2
-
23
-
-
52249114541
-
-
Unbalanced data classification using extreme outlier elimination and sampling techniques for fraud detection. Proceedings of the 15th International Conference on Advanced Computing and Communication, Guwahati, India
-
Padmaja, T. M., Dhulipalla, N., Bapi, R. S., & Krishna, P. R. (2007). Unbalanced data classification using extreme outlier elimination and sampling techniques for fraud detection. Proceedings of the 15th International Conference on Advanced Computing and Communication, Guwahati, India, 511-516.
-
(2007)
, pp. 511-516
-
-
Padmaja, T.M.1
Dhulipalla, N.2
Bapi, R.S.3
Krishna, P.R.4
-
24
-
-
85041528332
-
-
Reducing misclassification costs. Proceedings of the 11th International Conference of Machine Learning, New Brunswick, NJ
-
Pazzani, M., Merz, C., & Murphy, P. (1994). Reducing misclassification costs. Proceedings of the 11th International Conference of Machine Learning, New Brunswick, NJ, 217-225.
-
(1994)
, pp. 217-225
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
-
25
-
-
29144443664
-
Minority report in fraud detection: Classification of skewed data
-
Phua, C., Alahakoon, D., & Lee, V. (2004). Minority report in fraud detection: Classification of skewed data. SIGKDD Explorations: Special Issue on Imbalanced Data Sets, 6(1), 50-59.
-
(2004)
SIGKDD Explorations: Special Issue on Imbalanced Data Sets
, vol.6
, Issue.1
, pp. 50-59
-
-
Phua, C.1
Alahakoon, D.2
Lee, V.3
-
26
-
-
0042346121
-
Tree induction for probability-based ranking
-
Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52(3), 199-215.
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 199-215
-
-
Provost, F.1
Domingos, P.2
-
27
-
-
0035283313
-
Robust classification systems for imprecise environments
-
Provost, F., & Fawcett, T. (2001). Robust classification systems for imprecise environments. Machine Learning, 42(3), 203-231.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
29
-
-
13944271875
-
Evaluating and tuning predictive data mining models using receiver operating characteristic curves
-
Sinha, A. P., & May, J. H. (2005). Evaluating and tuning predictive data mining models using receiver operating characteristic curves. Journal of Management Information Systems, 21(3), 249-280.
-
(2005)
Journal of Management Information Systems
, vol.21
, Issue.3
, pp. 249-280
-
-
Sinha, A.P.1
May, J.H.2
-
30
-
-
61549114384
-
SVMs modeling for highly imbalanced classification
-
Tang, Y., Zhang, Y.-Q., Chawla, N. V., & Krasser, S. (2009). SVMs modeling for highly imbalanced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(1), 281-288.
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.-Q.2
Chawla, N.V.3
Krasser, S.4
-
31
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering, 14(3), 659-665.
-
(2002)
IEEE Transactions on Knowledge and Data Engineering
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
32
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
Weiss, G. M., & Provost, F. (2003). Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19, 315-354.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
33
-
-
50549099450
-
Guest editorial: Special issue on utility-based data mining
-
Weiss, G. M., Zadrozny, B., & Saar-Tsechansky, M. (2010). Guest editorial: Special issue on utility-based data mining. Data Mining and Knowledge Discovery, 17(2), 129-135.
-
(2010)
Data Mining and Knowledge Discovery
, vol.17
, Issue.2
, pp. 129-135
-
-
Weiss, G.M.1
Zadrozny, B.2
Saar-Tsechansky, M.3
-
34
-
-
0035789316
-
-
Learning and making decisions when costs and probabilities are both unknown. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco
-
Zadrozny, B., & Elkan, C. (2001). Learning and making decisions when costs and probabilities are both unknown. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 204-213.
-
(2001)
, pp. 204-213
-
-
Zadrozny, B.1
Elkan, C.2
-
35
-
-
0032148763
-
An investigation of neural networks in thyroid function diagnosis
-
Zhang, G., & Berardi, V. L. (1998). An investigation of neural networks in thyroid function diagnosis. Health Care Management Science, 1(1), 29-37.
-
(1998)
Health Care Management Science
, vol.1
, Issue.1
, pp. 29-37
-
-
Zhang, G.1
Berardi, V.L.2
-
36
-
-
84859854890
-
-
KNN approach to unbalanced data distributions: A case study involving information extraction. Proceedings of the 20th ICML Workshop on Learning from Imbalanced Data Sets, Washington, DC
-
Zhang, J., & Mani, I. (2003). KNN approach to unbalanced data distributions: A case study involving information extraction. Proceedings of the 20th ICML Workshop on Learning from Imbalanced Data Sets, Washington, DC, 42-48.
-
(2003)
, pp. 42-48
-
-
Zhang, J.1
Mani, I.2
-
37
-
-
33947502269
-
A multi-objective genetic programming approach to developing Pareto optimal decision tress
-
Zhao, H. (2007). A multi-objective genetic programming approach to developing Pareto optimal decision tress. Decision Support Systems, 43(3), 809-826.
-
(2007)
Decision Support Systems
, vol.43
, Issue.3
, pp. 809-826
-
-
Zhao, H.1
-
38
-
-
0040431304
-
Data mining for network intrusion detection: A comparison of alternative methods
-
Zhu, D., Premkumar, G., Zhang, X., & Chu, C.-H. (2001). Data mining for network intrusion detection: A comparison of alternative methods. Decision Sciences, 32(4), 635-660.
-
(2001)
Decision Sciences
, vol.32
, Issue.4
, pp. 635-660
-
-
Zhu, D.1
Premkumar, G.2
Zhang, X.3
Chu, C.-H.4
|