메뉴 건너뛰기




Volumn 42, Issue 4, 2011, Pages 803-829

When costs are unequal and unknown: A subtree grafting approach for unbalanced data classification

Author keywords

And unknown costs; Tree induction; Unbalanced data classification

Indexed keywords


EID: 84859819289     PISSN: 00117315     EISSN: 15405915     Source Type: Journal    
DOI: 10.1111/j.1540-5915.2011.00332.x     Document Type: Article
Times cited : (21)

References (38)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA : University of California, School of Information and Computer Science. Retrieved July 27, 2010, from
    • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. Irvine, CA : University of California, School of Information and Computer Science. Retrieved July 27, 2010, from
    • (2007) UCI machine learning repository
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 66549085044 scopus 로고    scopus 로고
    • Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting
    • Bansal, G., Sinha, A., & Zhao, H. (2008). Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting. Journal of Management Information Systems, 25(3), 315-336.
    • (2008) Journal of Management Information Systems , vol.25 , Issue.3 , pp. 315-336
    • Bansal, G.1    Sinha, A.2    Zhao, H.3
  • 5
    • 24344490308 scopus 로고    scopus 로고
    • Support vector machines for candidate nodules classification
    • Campadelli, P., Casiraghi, E., & Valentini, G. (2005). Support vector machines for candidate nodules classification. Neurocomputing, 68, 281-288.
    • (2005) Neurocomputing , vol.68 , pp. 281-288
    • Campadelli, P.1    Casiraghi, E.2    Valentini, G.3
  • 6
    • 19544370525 scopus 로고    scopus 로고
    • Test-cost sensitive naive Bayes classification. Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK
    • Chai, X., Deng, L., Yang, Q., & Ling, C. X. (2004). Test-cost sensitive naive Bayes classification. Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK, 51-58.
    • (2004) , pp. 51-58
    • Chai, X.1    Deng, L.2    Yang, Q.3    Ling, C.X.4
  • 10
    • 0002106691 scopus 로고    scopus 로고
    • MetaCost: A general method for making classifiers cost-sensitive. Proceedings of the 5th SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA
    • Domingos, P. (1999). MetaCost: A general method for making classifiers cost-sensitive. Proceedings of the 5th SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, 155-164.
    • (1999) , pp. 155-164
    • Domingos, P.1
  • 11
    • 0004708854 scopus 로고    scopus 로고
    • Exploiting the cost (in)sensitivity of decision tree splitting criteria. Proceedings of the 17th International Conference on Machine Learning, San Jose, CA
    • Drummond, C., & Holte, R. C. (2000). Exploiting the cost (in)sensitivity of decision tree splitting criteria. Proceedings of the 17th International Conference on Machine Learning, San Jose, CA, 239-246.
    • (2000) , pp. 239-246
    • Drummond, C.1    Holte, R.C.2
  • 13
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning. Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA
    • Elkan, C. (2001). The foundations of cost-sensitive learning. Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA, 973-978.
    • (2001) , pp. 973-978
    • Elkan, C.1
  • 14
    • 0013316935 scopus 로고    scopus 로고
    • AdaCost: Misclassification cost-sensitive boosting. Proceedings of the 16th International Conference on Machine Learning, Bled, Slovenia
    • Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999). AdaCost: Misclassification cost-sensitive boosting. Proceedings of the 16th International Conference on Machine Learning, Bled, Slovenia, 97-105.
    • (1999) , pp. 97-105
    • Fan, W.1    Stolfo, S.J.2    Zhang, J.3    Chan, P.K.4
  • 15
    • 50549087357 scopus 로고    scopus 로고
    • PRIE: A system for generating rulelists to maximize ROC performance
    • Fawcett, T. (2008). PRIE: A system for generating rulelists to maximize ROC performance. Data Mining and Knowledge Discovery, 17(2), 207-224.
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 207-224
    • Fawcett, T.1
  • 16
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
    • Guo, H., & Viktor, H. (2004). Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach. SIGKDD Explorations: Special Issue on Imbalanced Data Sets, 6(1), 30-39.
    • (2004) SIGKDD Explorations: Special Issue on Imbalanced Data Sets , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.2
  • 18
    • 0035788944 scopus 로고    scopus 로고
    • Data mining techniques to improve forecast accuracy in airline business. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco
    • Hueglin, C., & Vannotti, F. (2001). Data mining techniques to improve forecast accuracy in airline business. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 438-442.
    • (2001) , pp. 438-442
    • Hueglin, C.1    Vannotti, F.2
  • 19
    • 0001201703 scopus 로고
    • A novelty detection approach to classification. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada
    • Japkowicz, N., Myers, C., & Gluck, M. (1995). A novelty detection approach to classification. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, 518-523.
    • (1995) , pp. 518-523
    • Japkowicz, N.1    Myers, C.2    Gluck, M.3
  • 20
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30(2), 195-215.
    • (1998) Machine Learning , vol.30 , Issue.2 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 21
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced data sets: One-sided sampling. Proceedings of 14th International Conference on Machine Learning, Nashville, TN
    • Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced data sets: One-sided sampling. Proceedings of 14th International Conference on Machine Learning, Nashville, TN, 179-186.
    • (1997) , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 22
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions. Proceedings of 4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York
    • Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions. Proceedings of 4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 73-79.
    • (1998) , pp. 73-79
    • Ling, C.X.1    Li, C.2
  • 23
    • 52249114541 scopus 로고    scopus 로고
    • Unbalanced data classification using extreme outlier elimination and sampling techniques for fraud detection. Proceedings of the 15th International Conference on Advanced Computing and Communication, Guwahati, India
    • Padmaja, T. M., Dhulipalla, N., Bapi, R. S., & Krishna, P. R. (2007). Unbalanced data classification using extreme outlier elimination and sampling techniques for fraud detection. Proceedings of the 15th International Conference on Advanced Computing and Communication, Guwahati, India, 511-516.
    • (2007) , pp. 511-516
    • Padmaja, T.M.1    Dhulipalla, N.2    Bapi, R.S.3    Krishna, P.R.4
  • 24
    • 85041528332 scopus 로고
    • Reducing misclassification costs. Proceedings of the 11th International Conference of Machine Learning, New Brunswick, NJ
    • Pazzani, M., Merz, C., & Murphy, P. (1994). Reducing misclassification costs. Proceedings of the 11th International Conference of Machine Learning, New Brunswick, NJ, 217-225.
    • (1994) , pp. 217-225
    • Pazzani, M.1    Merz, C.2    Murphy, P.3
  • 26
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52(3), 199-215.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 27
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification systems for imprecise environments
    • Provost, F., & Fawcett, T. (2001). Robust classification systems for imprecise environments. Machine Learning, 42(3), 203-231.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 29
    • 13944271875 scopus 로고    scopus 로고
    • Evaluating and tuning predictive data mining models using receiver operating characteristic curves
    • Sinha, A. P., & May, J. H. (2005). Evaluating and tuning predictive data mining models using receiver operating characteristic curves. Journal of Management Information Systems, 21(3), 249-280.
    • (2005) Journal of Management Information Systems , vol.21 , Issue.3 , pp. 249-280
    • Sinha, A.P.1    May, J.H.2
  • 31
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering, 14(3), 659-665.
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 32
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G. M., & Provost, F. (2003). Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19, 315-354.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 34
    • 0035789316 scopus 로고    scopus 로고
    • Learning and making decisions when costs and probabilities are both unknown. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco
    • Zadrozny, B., & Elkan, C. (2001). Learning and making decisions when costs and probabilities are both unknown. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 204-213.
    • (2001) , pp. 204-213
    • Zadrozny, B.1    Elkan, C.2
  • 35
    • 0032148763 scopus 로고    scopus 로고
    • An investigation of neural networks in thyroid function diagnosis
    • Zhang, G., & Berardi, V. L. (1998). An investigation of neural networks in thyroid function diagnosis. Health Care Management Science, 1(1), 29-37.
    • (1998) Health Care Management Science , vol.1 , Issue.1 , pp. 29-37
    • Zhang, G.1    Berardi, V.L.2
  • 36
    • 84859854890 scopus 로고    scopus 로고
    • KNN approach to unbalanced data distributions: A case study involving information extraction. Proceedings of the 20th ICML Workshop on Learning from Imbalanced Data Sets, Washington, DC
    • Zhang, J., & Mani, I. (2003). KNN approach to unbalanced data distributions: A case study involving information extraction. Proceedings of the 20th ICML Workshop on Learning from Imbalanced Data Sets, Washington, DC, 42-48.
    • (2003) , pp. 42-48
    • Zhang, J.1    Mani, I.2
  • 37
    • 33947502269 scopus 로고    scopus 로고
    • A multi-objective genetic programming approach to developing Pareto optimal decision tress
    • Zhao, H. (2007). A multi-objective genetic programming approach to developing Pareto optimal decision tress. Decision Support Systems, 43(3), 809-826.
    • (2007) Decision Support Systems , vol.43 , Issue.3 , pp. 809-826
    • Zhao, H.1
  • 38
    • 0040431304 scopus 로고    scopus 로고
    • Data mining for network intrusion detection: A comparison of alternative methods
    • Zhu, D., Premkumar, G., Zhang, X., & Chu, C.-H. (2001). Data mining for network intrusion detection: A comparison of alternative methods. Decision Sciences, 32(4), 635-660.
    • (2001) Decision Sciences , vol.32 , Issue.4 , pp. 635-660
    • Zhu, D.1    Premkumar, G.2    Zhang, X.3    Chu, C.-H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.