메뉴 건너뛰기




Volumn 32, Issue 4, 2001, Pages 635-660

Data mining for network intrusion detection: A comparison of alternative methods

Author keywords

Data mining; Inductive learning; Intrusion detection; Network security; Neural networks; Rough sets; Telecommunications

Indexed keywords


EID: 0040431304     PISSN: 00117315     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1540-5915.2001.tb00975.x     Document Type: Article
Times cited : (84)

References (56)
  • 6
    • 0003282482 scopus 로고    scopus 로고
    • High confidence design for security
    • Chin, S. K. (1999). High confidence design for security. Communication of the ACM, 42(7), 33-37.
    • (1999) Communication of the ACM , vol.42 , Issue.7 , pp. 33-37
    • Chin, S.K.1
  • 7
    • 0028485121 scopus 로고
    • A neural network system for forecasting method selection
    • Chu, C. H., & Widjaja, D. (1994). A neural network system for forecasting method selection. Decision Support Systems, 12, 13-24.
    • (1994) Decision Support Systems , vol.12 , pp. 13-24
    • Chu, C.H.1    Widjaja, D.2
  • 12
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • Desai, V. S., Crook, J. N., & Overstreet, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95, 24-37.
    • (1996) European Journal of Operational Research , vol.95 , pp. 24-37
    • Desai, V.S.1    Crook, J.N.2    Overstreet, G.A.3
  • 17
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-54.
    • (1996) AI Magazine , vol.17 , Issue.3 , pp. 37-54
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 19
    • 0001351468 scopus 로고
    • Using genetic algorithms to explore pattern recognition in the immune system
    • Forrest, S., Jovornik, B., Smith, R. E., & Perelson, A. S. (1993). Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation, 1(3), 191-211.
    • (1993) Evolutionary Computation , vol.1 , Issue.3 , pp. 191-211
    • Forrest, S.1    Jovornik, B.2    Smith, R.E.3    Perelson, A.S.4
  • 25
    • 0029361634 scopus 로고
    • Security is fuzzy! Applying fuzzy logic to the multipolicy paradigm
    • Hosmer, H. H. (1995). Security is fuzzy! Applying fuzzy logic to the multipolicy paradigm. Computer Security Journal, 11(2), 35-45.
    • (1995) Computer Security Journal , vol.11 , Issue.2 , pp. 35-45
    • Hosmer, H.H.1
  • 27
    • 0041189147 scopus 로고    scopus 로고
    • Computer Science Dept., Columbia University, New York, NY
    • Lee, W., & Stolfo, S. J. (2000). Data mining approaches for intrusion detection. Available at http://www.cs.columbia.edu/~sal/hpapers/USENIX/usenix.html, Computer Science Dept., Columbia University, New York, NY
    • (2000) Data Mining Approaches for Intrusion Detection
    • Lee, W.1    Stolfo, S.J.2
  • 29
    • 0003158868 scopus 로고    scopus 로고
    • Mining audit data to build intrusion detection models
    • R. Agrawal, P. E. Stolorz, & G. Piatetsky-Shapiro (Eds.) (KDD-98), Menlo Park, CA: AAAI Press
    • Lee, W., Stolfo, S. J., & Mok, K. W. (2000). Mining audit data to build intrusion detection models. In R. Agrawal, P. E. Stolorz, & G. Piatetsky-Shapiro (Eds.), Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), Menlo Park, CA: AAAI Press, 66-72.
    • (2000) Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining , pp. 66-72
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 30
    • 0034300835 scopus 로고    scopus 로고
    • Improving intrusion detection performance using keyword selection and neural networks
    • Lippmann, R., & Cunningham, R. K. (2000). Improving intrusion detection performance using keyword selection and neural networks. Computer Networks, 34, 597-603
    • (2000) Computer Networks , vol.34 , pp. 597-603
    • Lippmann, R.1    Cunningham, R.K.2
  • 32
    • 0027609384 scopus 로고
    • A survey of intrusion detection techniques
    • Lunt, T. F. (1993). A survey of intrusion detection techniques. Computer & Security, 12.
    • (1993) Computer & Security , vol.12
    • Lunt, T.F.1
  • 34
    • 27244453070 scopus 로고    scopus 로고
    • GASSATA - A genetic algorithm as an alternative tool for security audit trails analysis
    • Louvain-la-Neuve, Belgium
    • Mé, L. (1998). GASSATA - A genetic algorithm as an alternative tool for security audit trails analysis. First International Workshop on the Recent Advances in Intrusion Detection (RAID98). Louvain-la-Neuve, Belgium. Available at http://www.zurich.ibm.com/~dac/Prog_RAID98/Table_of_content.html
    • (1998) First International Workshop on the Recent Advances in Intrusion Detection (RAID98)
    • Mé, L.1
  • 35
    • 0002944481 scopus 로고
    • Inducing rules for expert system development: An example using default and bankruptcy rules
    • Messier, W. F., & Hansen, J. V. (1988). Inducing rules for expert system development: An example using default and bankruptcy rules. Management Science 34(12), 1403-1415.
    • (1988) Management Science , vol.34 , Issue.12 , pp. 1403-1415
    • Messier, W.F.1    Hansen, J.V.2
  • 40
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess end games
    • R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Palo Alto, CA: Tioga Publishing Company
    • Quinlan, J. R. (1984). Learning efficient classification procedures and their application to chess end games. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning, An artificial intelligence approach. Palo Alto, CA: Tioga Publishing Company, 463-482.
    • (1984) Machine Learning, An Artificial Intelligence Approach , pp. 463-482
    • Quinlan, J.R.1
  • 42
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: The MIT Press
    • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing. Cambridge, MA: The MIT Press, 318-362.
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 48
    • 0033277434 scopus 로고    scopus 로고
    • Choosing data-mining methods for multiple classification: Representational and performance measure implication for decision support
    • Spangler, W., May, J. H., & Vargas, L. G. (1999). Choosing data-mining methods for multiple classification: Representational and performance measure implication for decision support. Journal of Management Information Systems, 16(1), 37-62.
    • (1999) Journal of Management Information Systems , vol.16 , Issue.1 , pp. 37-62
    • Spangler, W.1    May, J.H.2    Vargas, L.G.3
  • 51
    • 0033277431 scopus 로고    scopus 로고
    • Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction
    • Sung, T. K., Chang, N., & Lee, G. (1999). Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction. Journal of Management Information Systems, 16(1), 63-85.
    • (1999) Journal of Management Information Systems , vol.16 , Issue.1 , pp. 63-85
    • Sung, T.K.1    Chang, N.2    Lee, G.3
  • 52
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure prediction
    • Tam, K., & Kiang, M. (1992). Managerial applications of neural networks: The case of bank failure prediction. Management Science, 38(1), 926-947.
    • (1992) Management Science , vol.38 , Issue.1 , pp. 926-947
    • Tam, K.1    Kiang, M.2
  • 54
    • 0001512820 scopus 로고
    • An empirical comparison of pattern recognition, neural nets, and machine learning classification methods
    • San Francisco: Morgan Kaufmann
    • Weiss, S. M., & Kapouleas, I. (1989). An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, San Francisco: Morgan Kaufmann, 781-787.
    • (1989) Proceedings of the Eleventh International Joint Conference on Artificial Intelligence , pp. 781-787
    • Weiss, S.M.1    Kapouleas, I.2
  • 55
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11, 545-557.
    • (1994) Decision Support Systems , vol.11 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 56
    • 0031476199 scopus 로고    scopus 로고
    • Connectionist approaches for solver selection in constrained project scheduling
    • Zhu, D., & Padman, R. (1997). Connectionist approaches for solver selection in constrained project scheduling. Annals of Operations Research, 72, 265-298.
    • (1997) Annals of Operations Research , vol.72 , pp. 265-298
    • Zhu, D.1    Padman, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.