메뉴 건너뛰기




Volumn 20, Issue 2, 2012, Pages 372-384

A fuzzy system constructed by rule generation and iterative linear svr for antecedent and consequent parameter optimization

Author keywords

Fuzzy modeling; fuzzy neural networks (FNNs); neural fuzzy systems (NFSs); series prediction; support vector regression (SVR); support vectors (SVs)

Indexed keywords

EMPIRICAL RISK MINIMIZATION; FREE PARAMETERS; FUZZY IF-THEN RULES; FUZZY MODELING; FUZZY REGRESSION MODELS; INPUT SPACE; K-MEANS CLUSTERING ALGORITHM; LINEAR COMBINATION COEFFICIENTS; NEURAL FUZZY SYSTEMS; PARAMETER LEARNING; PARAMETER OPTIMIZATION; RULE GENERATION; STRUCTURAL RISK MINIMIZATION; SUPPORT VECTOR; SUPPORT VECTOR REGRESSION (SVR); TAKAGI-SUGENO;

EID: 84859724131     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2011.2174997     Document Type: Article
Times cited : (58)

References (40)
  • 2
    • 73449111308 scopus 로고    scopus 로고
    • Neural network architectures and learning algorithms
    • Dec.
    • B. M. Wilamowski, "Neural network architectures and learning algorithms," IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 56-63, Dec. 2009.
    • (2009) IEEE Ind. Electron. Mag. , vol.3 , Issue.4 , pp. 56-63
    • Wilamowski, B.M.1
  • 3
    • 40949158844 scopus 로고    scopus 로고
    • Wavelet basis function neural networks for sequential learning
    • DOI 10.1109/TNN.2007.911749
    • N. Jin and D. Liu, "Wavelet basis function neural networks for sequential learning," IEEE Trans. Neural Netw., vol. 19, no. 3, pp. 523-528, Mar. 2008. (Pubitemid 351411575)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.3 , pp. 523-528
    • Jin, N.1    Liu, D.2
  • 4
    • 77953719971 scopus 로고    scopus 로고
    • Electric load forecasting based on locally weighted support vector regression
    • Jul.
    • E. E. Elattar, J. Goulermas, and Q. H.Wu, "Electric load forecasting based on locally weighted support vector regression," IEEE Trans. Syst., Man, Cyber. C, Appl. Rev., vol. 40, no. 4, pp. 438-447, Jul. 2010.
    • (2010) IEEE Trans. Syst., Man, Cyber. C, Appl. Rev. , vol.40 , Issue.4 , pp. 438-447
    • Elattar, E.E.1    Goulermas, J.2    Wu, Q.H.3
  • 5
    • 78349310408 scopus 로고    scopus 로고
    • Online support vector regression with varying parameters for time-dependent data
    • Jan.
    • O. A. Omitaomu, M. K. Jeong, and A. B. Badiru, "Online support vector regression with varying parameters for time-dependent data," IEEE Trans. Syst., Man, Cyber. A, Syst. Humans, vol. 41, no. 1, pp. 191-197, Jan. 2011.
    • (2011) IEEE Trans. Syst., Man, Cyber. A, Syst. Humans , vol.41 , Issue.1 , pp. 191-197
    • Omitaomu, O.A.1    Jeong, M.K.2    Badiru, A.B.3
  • 6
    • 34047153277 scopus 로고    scopus 로고
    • Global optimization with multivariate adaptive regression splines
    • DOI 10.1109/TSMCB.2006.883430, Special Issue on Robot Learning by Observation, Demonstration and Imitation
    • S. Crino andD. E. Brown, "Global optimizationwith multivariate adaptive regression splines," IEEE Trans. Syst., Man, Cyber. B, Cybern., vol. 37, no. 2, pp. 333-340, Apr. 2007. (Pubitemid 46523223)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.2 , pp. 333-340
    • Crino, S.1    Brown, D.E.2
  • 8
    • 77955434219 scopus 로고    scopus 로고
    • Sample-efficient regression trees (SERT) for semiconductor yield loss analysis
    • Aug.
    • A. Chen and A. Hong, "Sample-efficient regression trees (SERT) for semiconductor yield loss analysis," IEEE Trans. Semicond. Manuf., vol. 23, no. 3, pp. 358-369, Aug. 2010.
    • (2010) IEEE Trans. Semicond. Manuf. , vol.23 , Issue.3 , pp. 358-369
    • Chen, A.1    Hong, A.2
  • 9
    • 77950332817 scopus 로고    scopus 로고
    • Efficient microarchitectural vulnerabilities prediction using boosted regression trees and patient rule inductions
    • May
    • B. Li, L. Duan, and L. Peng, "Efficient microarchitectural vulnerabilities prediction using boosted regression trees and patient rule inductions," IEEE Trans. Comput., vol. 59, no. 5, pp. 593-607, May 2010.
    • (2010) IEEE Trans. Comput. , vol.59 , Issue.5 , pp. 593-607
    • Li, B.1    Duan, L.2    Peng, L.3
  • 11
    • 34447257701 scopus 로고    scopus 로고
    • Automatic construction of feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm optimization
    • Sep.
    • C. F. Juang, I. F. Chung, and C. H. Hsu, "Automatic construction of feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm optimization," Fuzzy Sets Syst., vol. 158, no. 18, pp. 1979-1996, Sep. 2007.
    • (2007) Fuzzy Sets Syst. , vol.158 , Issue.18 , pp. 1979-1996
    • Juang, C.F.1    Chung, I.F.2    Hsu, C.H.3
  • 12
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • Feb.
    • C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, Feb. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 13
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • DOI 10.1109/91.995117, PII S106367060202965X
    • N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002. (Pubitemid 34554860)
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 14
    • 58149487281 scopus 로고    scopus 로고
    • A self-evolving interval type-2 fuzzy neural network with on-line structure and parameter learning
    • Dec.
    • C. F. Juang and Y. W. Tsao, "A self-evolving interval type-2 fuzzy neural network with on-line structure and parameter learning," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411-1424, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1411-1424
    • Juang, C.F.1    Tsao, Y.W.2
  • 15
    • 70349625807 scopus 로고    scopus 로고
    • Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a braincomputer interface
    • Dec.
    • D. Coyle, G. Prasad, and T. M. McGinnity, "Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a braincomputer interface," IEEE Trans. Syst., Man, Cyber. B, Cybern., vol. 39, no. 6, pp. 1458-1471, Dec. 2009.
    • (2009) IEEE Trans. Syst., Man, Cyber. B, Cybern. , vol.39 , Issue.6 , pp. 1458-1471
    • Coyle, D.1    Prasad, G.2    McGinnity, T.M.3
  • 16
    • 72649095852 scopus 로고    scopus 로고
    • SOFMLS: Online self-organizing fuzzy modified least squares network
    • Dec.
    • J. D. J. Rubio, "SOFMLS: Online self-organizing fuzzy modified least squares network," IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1296-1309, Dec. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.6 , pp. 1296-1309
    • Rubio, J.D.J.1
  • 17
    • 77950645780 scopus 로고    scopus 로고
    • Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series
    • Apr.
    • H. Song, C. Miao, W. Roel, Z. Shen, and F. Catthoor, "Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series," IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 233-250, Apr. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.2 , pp. 233-250
    • Song, H.1    Miao, C.2    Roel, W.3    Shen, Z.4    Catthoor, F.5
  • 18
    • 78649732347 scopus 로고    scopus 로고
    • A self-organizing fuzzy neural network based on a growing-and-pruning algorithm
    • Dec.
    • H. Han and J. Qiao, "A self-organizing fuzzy neural network based on a growing-and-pruning algorithm," IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1129-1143, Dec. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.6 , pp. 1129-1143
    • Han, H.1    Qiao, J.2
  • 19
    • 80051493000 scopus 로고    scopus 로고
    • Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units
    • Aug.
    • C. F. Juang, T. C. Chen, andW.Y. Cheng, "Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 717-728, Aug. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.4 , pp. 717-728
    • Juang, C.F.1    Chen, T.C.2    Cheng, W.Y.3
  • 22
    • 34249000692 scopus 로고    scopus 로고
    • Fuzzy weighted support vector regression with a fuzzy partition
    • Jun.
    • C. C. Chuang, "Fuzzy weighted support vector regression with a fuzzy partition," IEEE Trans. Syst., Man, Cyber. B, Cybern., vol. 37, no. 3, pp. 630-640, Jun. 2007.
    • (2007) IEEE Trans. Syst., Man, Cyber. B, Cybern. , vol.37 , Issue.3 , pp. 630-640
    • Chuang, C.C.1
  • 23
    • 56049114871 scopus 로고    scopus 로고
    • Predicting the parts weight in plastic injection molding using least squares support vector regression
    • Nov.
    • X. Li, B. Hu, and R. Du, "Predicting the parts weight in plastic injection molding using least squares support vector regression," IEEE Trans. Syst., Man, Cyber. C, Appl. Rev., vol. 38, no. 6, pp. 827-833, Nov. 2008.
    • (2008) IEEE Trans. Syst., Man, Cyber. C, Appl. Rev. , vol.38 , Issue.6 , pp. 827-833
    • Li, X.1    Hu, B.2    Du, R.3
  • 24
    • 1542333735 scopus 로고    scopus 로고
    • Support vector learning mechanism for fuzzy rule-based modeling: A new approach
    • Jan.
    • J. H. Chiang and P. Y. Hao, "Support vector learning mechanism for fuzzy rule-based modeling: A new approach," IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 1-11, Jan. 2004.
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , Issue.1 , pp. 1-11
    • Chiang, J.H.1    Hao, P.Y.2
  • 25
    • 17644395959 scopus 로고    scopus 로고
    • TSK-fuzzy modeling based on ε-insensitive learning
    • DOI 10.1109/TFUZZ.2004.840094
    • J. M. Leski, "TSK-fuzzy modeling based on ε-insensitive learning," IEEE Trans. Fuzzy Syst., vol. 13, no. 2, pp. 181-193, Apr. 2005. (Pubitemid 40556000)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.2 , pp. 181-193
    • Leski, J.M.1
  • 26
    • 77955479541 scopus 로고    scopus 로고
    • Fuzzy rule-based support vector regression system
    • Aug.
    • L.Wang, Z. C. Mu, and H. Guo, "Fuzzy rule-based support vector regression system," J. Control Theory Appl., vol. 3, no. 3, pp. 230-234, Aug. 2005.
    • (2005) J. Control Theory Appl. , vol.3 , Issue.3 , pp. 230-234
    • Wang, L.1    Mu, Z.C.2    Guo, H.3
  • 27
    • 27944509100 scopus 로고    scopus 로고
    • Fuzzy neural network design using support vector regression for function approximation with outliers
    • IEEE Systems, Man and Cybernetics Society, Proceedings - 2005 International Conference on Systems, Man and Cybernetics
    • C. T. Lin, S. F. Liang, C. M. Yeh, and K. W. Fan, "Fuzzy neural network design using support vector regression for function approximation with outliers," in Proc. IEEE Int. Conf. Syst.,Man, Cyber., Oct. 2005, pp. 2763-2768. (Pubitemid 41674806)
    • (2005) Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics , vol.3 , pp. 2763-2768
    • Lin, C.-T.1    Liang, S.-F.2    Yeh, C.-M.3    Fan, K.W.4
  • 28
    • 67649993046 scopus 로고    scopus 로고
    • TS-fuzzy system-based support vector regression
    • Sep.
    • C. F. Juang and C. D Hsieh, "TS-fuzzy system-based support vector regression," Fuzzy Sets Syst., vol. 160, no. 17, pp. 2486-2504, Sep. 2009.
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.17 , pp. 2486-2504
    • Juang, C.F.1    Hsieh, C.D.2
  • 29
    • 77950655845 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with support vector regression for dynamic system modeling
    • Apr.
    • C. F. Juang and C. D. Hsieh, "A locally recurrent fuzzy neural network with support vector regression for dynamic system modeling," IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 261-273, Apr. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.2 , pp. 261-273
    • Juang, C.F.1    Hsieh, C.D.2
  • 30
    • 77955490941 scopus 로고    scopus 로고
    • An interval type-2 fuzzy neural network with support vector regression for noisy regression problems
    • Aug.
    • C. F. Juang, R. B. Huang, andW. Y. Cheng, "An interval type-2 fuzzy neural network with support vector regression for noisy regression problems," IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686-699, Aug. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.4 , pp. 686-699
    • Juang, C.F.1    Huang, R.B.2    Cheng, W.Y.3
  • 31
    • 0742290026 scopus 로고    scopus 로고
    • Identification of complex systems based on neural and Takagi-Sugeno fuzzy model
    • Feb.
    • D. Kukolj and E. Levi, "Identification of complex systems based on neural and Takagi-Sugeno fuzzy model," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 272-282, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.34 , Issue.1 , pp. 272-282
    • Kukolj, D.1    Levi, E.2
  • 32
    • 57049179077 scopus 로고    scopus 로고
    • Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models
    • Dec.
    • N. R. Pal and S. Saha, "Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 6, pp. 1626-1638, Dec. 2008.
    • (2008) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.38 , Issue.6 , pp. 1626-1638
    • Pal, N.R.1    Saha, S.2
  • 34
    • 0038198693 scopus 로고    scopus 로고
    • Kernel machines and additive fuzzy systems: Classification and function approximation
    • St. Louis, MO
    • Y. Chen and J. Z. Wang, "Kernel machines and additive fuzzy systems: Classification and function approximation," in Proc. 12th IEEE Int. Conf. Fuzzy Syst., St. Louis, MO, 2003, vol. 2, pp. 789-795.
    • (2003) Proc. 12th IEEE Int. Conf. Fuzzy Syst. , vol.2 , pp. 789-795
    • Chen, Y.1    Wang, J.Z.2
  • 35
    • 1542273540 scopus 로고    scopus 로고
    • Computing derivatives in interval type-2 fuzzy logic system
    • Feb.
    • J. M. Mendel, "Computing derivatives in interval type-2 fuzzy logic system," IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84-98, Feb. 2004.
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , Issue.1 , pp. 84-98
    • Mendel, J.M.1
  • 36
    • 0031268065 scopus 로고    scopus 로고
    • An ART-based fuzzy adaptive learning control network
    • Nov.
    • C.J. Lin and C.T. Lin, "An ART-based fuzzy adaptive learning control network," IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477-496, Nov. 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.4 , pp. 477-496
    • Lin, C.J.1    Lin, C.T.2
  • 38
    • 0032635903 scopus 로고    scopus 로고
    • Noise impact on time-series forecasting using an intelligent pattern matching technique
    • Aug.
    • S. Singh, "Noise impact on time-series forecasting using an intelligent pattern matching technique," Pattern Recognit., vol. 32, no. 8, pp. 1389-1398, Aug. 1999.
    • (1999) Pattern Recognit. , vol.32 , Issue.8 , pp. 1389-1398
    • Singh, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.