-
2
-
-
73449111308
-
Neural network architectures and learning algorithms
-
Dec.
-
B. M. Wilamowski, "Neural network architectures and learning algorithms," IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 56-63, Dec. 2009.
-
(2009)
IEEE Ind. Electron. Mag.
, vol.3
, Issue.4
, pp. 56-63
-
-
Wilamowski, B.M.1
-
3
-
-
40949158844
-
Wavelet basis function neural networks for sequential learning
-
DOI 10.1109/TNN.2007.911749
-
N. Jin and D. Liu, "Wavelet basis function neural networks for sequential learning," IEEE Trans. Neural Netw., vol. 19, no. 3, pp. 523-528, Mar. 2008. (Pubitemid 351411575)
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, Issue.3
, pp. 523-528
-
-
Jin, N.1
Liu, D.2
-
4
-
-
77953719971
-
Electric load forecasting based on locally weighted support vector regression
-
Jul.
-
E. E. Elattar, J. Goulermas, and Q. H.Wu, "Electric load forecasting based on locally weighted support vector regression," IEEE Trans. Syst., Man, Cyber. C, Appl. Rev., vol. 40, no. 4, pp. 438-447, Jul. 2010.
-
(2010)
IEEE Trans. Syst., Man, Cyber. C, Appl. Rev.
, vol.40
, Issue.4
, pp. 438-447
-
-
Elattar, E.E.1
Goulermas, J.2
Wu, Q.H.3
-
5
-
-
78349310408
-
Online support vector regression with varying parameters for time-dependent data
-
Jan.
-
O. A. Omitaomu, M. K. Jeong, and A. B. Badiru, "Online support vector regression with varying parameters for time-dependent data," IEEE Trans. Syst., Man, Cyber. A, Syst. Humans, vol. 41, no. 1, pp. 191-197, Jan. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cyber. A, Syst. Humans
, vol.41
, Issue.1
, pp. 191-197
-
-
Omitaomu, O.A.1
Jeong, M.K.2
Badiru, A.B.3
-
6
-
-
34047153277
-
Global optimization with multivariate adaptive regression splines
-
DOI 10.1109/TSMCB.2006.883430, Special Issue on Robot Learning by Observation, Demonstration and Imitation
-
S. Crino andD. E. Brown, "Global optimizationwith multivariate adaptive regression splines," IEEE Trans. Syst., Man, Cyber. B, Cybern., vol. 37, no. 2, pp. 333-340, Apr. 2007. (Pubitemid 46523223)
-
(2007)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.37
, Issue.2
, pp. 333-340
-
-
Crino, S.1
Brown, D.E.2
-
7
-
-
79951729291
-
Sales forecasting of IT products using a hybrid MARS and SVR model
-
C. J. Lu, T. S. Lee, and C.M. Lian, "Sales forecasting of IT products using a hybrid MARS and SVR model," in Proc. IEEE Int. Conf. Data Mining Workshops, 2010, pp. 593-599.
-
(2010)
Proc. IEEE Int. Conf. Data Mining Workshops
, pp. 593-599
-
-
Lu, C.J.1
Lee, T.S.2
Lian, C.M.3
-
8
-
-
77955434219
-
Sample-efficient regression trees (SERT) for semiconductor yield loss analysis
-
Aug.
-
A. Chen and A. Hong, "Sample-efficient regression trees (SERT) for semiconductor yield loss analysis," IEEE Trans. Semicond. Manuf., vol. 23, no. 3, pp. 358-369, Aug. 2010.
-
(2010)
IEEE Trans. Semicond. Manuf.
, vol.23
, Issue.3
, pp. 358-369
-
-
Chen, A.1
Hong, A.2
-
9
-
-
77950332817
-
Efficient microarchitectural vulnerabilities prediction using boosted regression trees and patient rule inductions
-
May
-
B. Li, L. Duan, and L. Peng, "Efficient microarchitectural vulnerabilities prediction using boosted regression trees and patient rule inductions," IEEE Trans. Comput., vol. 59, no. 5, pp. 593-607, May 2010.
-
(2010)
IEEE Trans. Comput.
, vol.59
, Issue.5
, pp. 593-607
-
-
Li, B.1
Duan, L.2
Peng, L.3
-
10
-
-
0003684449
-
-
Berlin Germany: Springer ch. 10
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin, Germany: Springer, 2001, ch. 10.
-
(2001)
The Elements of Statistical Learning: Data Mining Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
11
-
-
34447257701
-
Automatic construction of feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm optimization
-
Sep.
-
C. F. Juang, I. F. Chung, and C. H. Hsu, "Automatic construction of feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm optimization," Fuzzy Sets Syst., vol. 158, no. 18, pp. 1979-1996, Sep. 2007.
-
(2007)
Fuzzy Sets Syst.
, vol.158
, Issue.18
, pp. 1979-1996
-
-
Juang, C.F.1
Chung, I.F.2
Hsu, C.H.3
-
12
-
-
0031999146
-
An on-line self-constructing neural fuzzy inference network and its applications
-
Feb.
-
C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, Feb. 1998.
-
(1998)
IEEE Trans. Fuzzy Syst.
, vol.6
, Issue.1
, pp. 12-32
-
-
Juang, C.F.1
Lin, C.T.2
-
13
-
-
0036530967
-
DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
-
DOI 10.1109/91.995117, PII S106367060202965X
-
N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002. (Pubitemid 34554860)
-
(2002)
IEEE Transactions on Fuzzy Systems
, vol.10
, Issue.2
, pp. 144-154
-
-
Kasabov, N.K.1
Song, Q.2
-
14
-
-
58149487281
-
A self-evolving interval type-2 fuzzy neural network with on-line structure and parameter learning
-
Dec.
-
C. F. Juang and Y. W. Tsao, "A self-evolving interval type-2 fuzzy neural network with on-line structure and parameter learning," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411-1424, Dec. 2008.
-
(2008)
IEEE Trans. Fuzzy Syst.
, vol.16
, Issue.6
, pp. 1411-1424
-
-
Juang, C.F.1
Tsao, Y.W.2
-
15
-
-
70349625807
-
Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a braincomputer interface
-
Dec.
-
D. Coyle, G. Prasad, and T. M. McGinnity, "Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a braincomputer interface," IEEE Trans. Syst., Man, Cyber. B, Cybern., vol. 39, no. 6, pp. 1458-1471, Dec. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cyber. B, Cybern.
, vol.39
, Issue.6
, pp. 1458-1471
-
-
Coyle, D.1
Prasad, G.2
McGinnity, T.M.3
-
16
-
-
72649095852
-
SOFMLS: Online self-organizing fuzzy modified least squares network
-
Dec.
-
J. D. J. Rubio, "SOFMLS: Online self-organizing fuzzy modified least squares network," IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1296-1309, Dec. 2009.
-
(2009)
IEEE Trans. Fuzzy Syst.
, vol.17
, Issue.6
, pp. 1296-1309
-
-
Rubio, J.D.J.1
-
17
-
-
77950645780
-
Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series
-
Apr.
-
H. Song, C. Miao, W. Roel, Z. Shen, and F. Catthoor, "Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series," IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 233-250, Apr. 2010.
-
(2010)
IEEE Trans. Fuzzy Syst.
, vol.18
, Issue.2
, pp. 233-250
-
-
Song, H.1
Miao, C.2
Roel, W.3
Shen, Z.4
Catthoor, F.5
-
18
-
-
78649732347
-
A self-organizing fuzzy neural network based on a growing-and-pruning algorithm
-
Dec.
-
H. Han and J. Qiao, "A self-organizing fuzzy neural network based on a growing-and-pruning algorithm," IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1129-1143, Dec. 2010.
-
(2010)
IEEE Trans. Fuzzy Syst.
, vol.18
, Issue.6
, pp. 1129-1143
-
-
Han, H.1
Qiao, J.2
-
19
-
-
80051493000
-
Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units
-
Aug.
-
C. F. Juang, T. C. Chen, andW.Y. Cheng, "Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 717-728, Aug. 2011.
-
(2011)
IEEE Trans. Fuzzy Syst.
, vol.19
, Issue.4
, pp. 717-728
-
-
Juang, C.F.1
Chen, T.C.2
Cheng, W.Y.3
-
21
-
-
0003408420
-
-
Cambridge,MA: MIT Press
-
B. Scholkopf and A. J. Smola, Learning with kernels: Support Vector Machines,Regularization, Optimization, and Beyond. Cambridge,MA: MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines,Regularization, Optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
22
-
-
34249000692
-
Fuzzy weighted support vector regression with a fuzzy partition
-
Jun.
-
C. C. Chuang, "Fuzzy weighted support vector regression with a fuzzy partition," IEEE Trans. Syst., Man, Cyber. B, Cybern., vol. 37, no. 3, pp. 630-640, Jun. 2007.
-
(2007)
IEEE Trans. Syst., Man, Cyber. B, Cybern.
, vol.37
, Issue.3
, pp. 630-640
-
-
Chuang, C.C.1
-
23
-
-
56049114871
-
Predicting the parts weight in plastic injection molding using least squares support vector regression
-
Nov.
-
X. Li, B. Hu, and R. Du, "Predicting the parts weight in plastic injection molding using least squares support vector regression," IEEE Trans. Syst., Man, Cyber. C, Appl. Rev., vol. 38, no. 6, pp. 827-833, Nov. 2008.
-
(2008)
IEEE Trans. Syst., Man, Cyber. C, Appl. Rev.
, vol.38
, Issue.6
, pp. 827-833
-
-
Li, X.1
Hu, B.2
Du, R.3
-
24
-
-
1542333735
-
Support vector learning mechanism for fuzzy rule-based modeling: A new approach
-
Jan.
-
J. H. Chiang and P. Y. Hao, "Support vector learning mechanism for fuzzy rule-based modeling: A new approach," IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 1-11, Jan. 2004.
-
(2004)
IEEE Trans. Fuzzy Syst.
, vol.12
, Issue.1
, pp. 1-11
-
-
Chiang, J.H.1
Hao, P.Y.2
-
25
-
-
17644395959
-
TSK-fuzzy modeling based on ε-insensitive learning
-
DOI 10.1109/TFUZZ.2004.840094
-
J. M. Leski, "TSK-fuzzy modeling based on ε-insensitive learning," IEEE Trans. Fuzzy Syst., vol. 13, no. 2, pp. 181-193, Apr. 2005. (Pubitemid 40556000)
-
(2005)
IEEE Transactions on Fuzzy Systems
, vol.13
, Issue.2
, pp. 181-193
-
-
Leski, J.M.1
-
26
-
-
77955479541
-
Fuzzy rule-based support vector regression system
-
Aug.
-
L.Wang, Z. C. Mu, and H. Guo, "Fuzzy rule-based support vector regression system," J. Control Theory Appl., vol. 3, no. 3, pp. 230-234, Aug. 2005.
-
(2005)
J. Control Theory Appl.
, vol.3
, Issue.3
, pp. 230-234
-
-
Wang, L.1
Mu, Z.C.2
Guo, H.3
-
27
-
-
27944509100
-
Fuzzy neural network design using support vector regression for function approximation with outliers
-
IEEE Systems, Man and Cybernetics Society, Proceedings - 2005 International Conference on Systems, Man and Cybernetics
-
C. T. Lin, S. F. Liang, C. M. Yeh, and K. W. Fan, "Fuzzy neural network design using support vector regression for function approximation with outliers," in Proc. IEEE Int. Conf. Syst.,Man, Cyber., Oct. 2005, pp. 2763-2768. (Pubitemid 41674806)
-
(2005)
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
, vol.3
, pp. 2763-2768
-
-
Lin, C.-T.1
Liang, S.-F.2
Yeh, C.-M.3
Fan, K.W.4
-
28
-
-
67649993046
-
TS-fuzzy system-based support vector regression
-
Sep.
-
C. F. Juang and C. D Hsieh, "TS-fuzzy system-based support vector regression," Fuzzy Sets Syst., vol. 160, no. 17, pp. 2486-2504, Sep. 2009.
-
(2009)
Fuzzy Sets Syst.
, vol.160
, Issue.17
, pp. 2486-2504
-
-
Juang, C.F.1
Hsieh, C.D.2
-
29
-
-
77950655845
-
A locally recurrent fuzzy neural network with support vector regression for dynamic system modeling
-
Apr.
-
C. F. Juang and C. D. Hsieh, "A locally recurrent fuzzy neural network with support vector regression for dynamic system modeling," IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 261-273, Apr. 2010.
-
(2010)
IEEE Trans. Fuzzy Syst.
, vol.18
, Issue.2
, pp. 261-273
-
-
Juang, C.F.1
Hsieh, C.D.2
-
30
-
-
77955490941
-
An interval type-2 fuzzy neural network with support vector regression for noisy regression problems
-
Aug.
-
C. F. Juang, R. B. Huang, andW. Y. Cheng, "An interval type-2 fuzzy neural network with support vector regression for noisy regression problems," IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686-699, Aug. 2010.
-
(2010)
IEEE Trans. Fuzzy Syst.
, vol.18
, Issue.4
, pp. 686-699
-
-
Juang, C.F.1
Huang, R.B.2
Cheng, W.Y.3
-
31
-
-
0742290026
-
Identification of complex systems based on neural and Takagi-Sugeno fuzzy model
-
Feb.
-
D. Kukolj and E. Levi, "Identification of complex systems based on neural and Takagi-Sugeno fuzzy model," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 272-282, Feb. 2004.
-
(2004)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.34
, Issue.1
, pp. 272-282
-
-
Kukolj, D.1
Levi, E.2
-
32
-
-
57049179077
-
Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models
-
Dec.
-
N. R. Pal and S. Saha, "Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 6, pp. 1626-1638, Dec. 2008.
-
(2008)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.38
, Issue.6
, pp. 1626-1638
-
-
Pal, N.R.1
Saha, S.2
-
34
-
-
0038198693
-
Kernel machines and additive fuzzy systems: Classification and function approximation
-
St. Louis, MO
-
Y. Chen and J. Z. Wang, "Kernel machines and additive fuzzy systems: Classification and function approximation," in Proc. 12th IEEE Int. Conf. Fuzzy Syst., St. Louis, MO, 2003, vol. 2, pp. 789-795.
-
(2003)
Proc. 12th IEEE Int. Conf. Fuzzy Syst.
, vol.2
, pp. 789-795
-
-
Chen, Y.1
Wang, J.Z.2
-
35
-
-
1542273540
-
Computing derivatives in interval type-2 fuzzy logic system
-
Feb.
-
J. M. Mendel, "Computing derivatives in interval type-2 fuzzy logic system," IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84-98, Feb. 2004.
-
(2004)
IEEE Trans. Fuzzy Syst.
, vol.12
, Issue.1
, pp. 84-98
-
-
Mendel, J.M.1
-
36
-
-
0031268065
-
An ART-based fuzzy adaptive learning control network
-
Nov.
-
C.J. Lin and C.T. Lin, "An ART-based fuzzy adaptive learning control network," IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477-496, Nov. 1997.
-
(1997)
IEEE Trans. Fuzzy Syst.
, vol.5
, Issue.4
, pp. 477-496
-
-
Lin, C.J.1
Lin, C.T.2
-
38
-
-
0032635903
-
Noise impact on time-series forecasting using an intelligent pattern matching technique
-
Aug.
-
S. Singh, "Noise impact on time-series forecasting using an intelligent pattern matching technique," Pattern Recognit., vol. 32, no. 8, pp. 1389-1398, Aug. 1999.
-
(1999)
Pattern Recognit.
, vol.32
, Issue.8
, pp. 1389-1398
-
-
Singh, S.1
-
39
-
-
0000057581
-
Predicting the future:Aconnectionist approach
-
A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, "Predicting the future:Aconnectionist approach," Int. J. Neural Syst., vol. 1, pp. 193-209, 1990.
-
(1990)
Int. J. Neural Syst.
, vol.1
, pp. 193-209
-
-
Weigend, A.S.1
Huberman, B.A.2
Rumelhart, D.E.3
|