메뉴 건너뛰기




Volumn 18, Issue 2, 2010, Pages 261-273

A locally recurrent fuzzy neural network with support vector regression for dynamic-system modeling

Author keywords

Dynamic system identification; Recurrent fuzzy neural networks (FNNs); Recurrent fuzzy systems; Support vector regression (SVR)

Indexed keywords

DYNAMIC SYSTEM IDENTIFICATION; DYNAMIC SYSTEMS; FEED-BACK LOOP; FIRING STRENGTH; FREE PARAMETERS; FUZZY MODELS; GENERALIZATION ABILITY; HIDDEN LAYERS; IDENTIFICATION PROBLEM; INPUT AND OUTPUTS; LINEAR FUNCTIONS; NETWORK NODE; NOISY DATA; ONE-PASS; PARAMETER LEARNING; RECURRENT FUZZY NEURAL NETWORK; RECURRENT FUZZY SYSTEMS; RECURRENT NETWORKS; SIMULATION RESULT; STRUCTURE-LEARNING; SUPPORT VECTOR REGRESSIONS; SYSTEM MODELING; TEMPORAL PROPERTY; TRAINING DATA;

EID: 77950655845     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2010.2040185     Document Type: Article
Times cited : (69)

References (31)
  • 1
    • 42549152732 scopus 로고    scopus 로고
    • A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming
    • DOI 10.1109/TNN.2007.910736
    • Q. Liu and J. Wang, "A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming," IEEE Trans. Neural Netw., vol.19, no.4, pp. 558-570, Apr. 2008. (Pubitemid 351583574)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.4 , pp. 558-570
    • Liu, Q.1    Wang, J.2
  • 2
    • 67349187901 scopus 로고    scopus 로고
    • Some characterizations of global exponential stability of a generic class of continuous-time recurrent neural networks
    • Jun.
    • L.Wang, R. Zhang, Z. Xu, and J. Peng, "Some characterizations of global exponential stability of a generic class of continuous-time recurrent neural networks," IEEE Trans. Syst., Man Cybern., Part B: Cybern., vol.39, no.3, pp. 763-772, Jun. 2009.
    • (2009) IEEE Trans. Syst., Man Cybern., Part B: Cybern. , vol.39 , Issue.3 , pp. 763-772
    • Wang, L.1    Zhang, R.2    Xu, Z.3    Peng, J.4
  • 3
    • 0032681147 scopus 로고    scopus 로고
    • A recurrent self-organizing neural fuzzy inference network
    • Jul.
    • C. F. Juang and C. T. Lin, "A recurrent self-organizing neural fuzzy inference network," IEEE Trans. Neural Netw., vol.10, no.4, pp. 828- 845, Jul. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.4 , pp. 828-845
    • Juang, C.F.1    Lin, C.T.2
  • 4
    • 0033098832 scopus 로고    scopus 로고
    • Recurrent neuro-fuzzy networks for nonlinear process modeling
    • Feb.
    • J. Zhang and A. J.Morris, "Recurrent neuro-fuzzy networks for nonlinear process modeling," IEEE Trans. Neural Netw., vol.10, no.2, pp. 313-326, Feb. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.2 , pp. 313-326
    • Zhang, J.1    Morris, A.J.2
  • 5
    • 0034244894 scopus 로고    scopus 로고
    • Identification and control of dynamic systems using recurrent fuzzy neural networks
    • Aug.
    • C. H. Lee and C. C. Teng, "Identification and control of dynamic systems using recurrent fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol.8, no.4, pp. 349-366, Aug. 2000.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.4 , pp. 349-366
    • Lee, C.H.1    Teng, C.C.2
  • 6
    • 0036531230 scopus 로고    scopus 로고
    • A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms
    • Apr.
    • C. F. Juang, "A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms," IEEE Trans. Fuzzy Syst., vol.10, no.2, pp. 155-170, Apr. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 155-170
    • Juang, C.F.1
  • 8
    • 4844222566 scopus 로고    scopus 로고
    • Prediction and identification using waveletbased recurrent fuzzy neural networks
    • Oct.
    • C. J. Lin and C. C. Chin, "Prediction and identification using waveletbased recurrent fuzzy neural networks," IEEE Trans. Syst., Man Cybern., Part B: Cybern., vol.34, no.5, pp. 2144-2154, Oct. 2004.
    • (2004) IEEE Trans. Syst., Man Cybern., Part B: Cybern. , vol.34 , Issue.5 , pp. 2144-2154
    • Lin, C.J.1    Chin, C.C.2
  • 9
    • 33744792340 scopus 로고    scopus 로고
    • Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation
    • Jun.
    • C. F. Juang and J. S. Chen, "Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation," IEEE Trans. Ind. Electron., vol.53, no.3, pp. 941-949, Jun. 2006.
    • (2006) IEEE Trans. Ind. Electron. , vol.53 , Issue.3 , pp. 941-949
    • Juang, C.F.1    Chen, J.S.2
  • 10
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • DOI 10.1109/91.995117, PII S106367060202965X
    • N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol.10, no.2, pp. 144-154, Apr. 2002. (Pubitemid 34554860)
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 11
    • 0742290026 scopus 로고    scopus 로고
    • Identification of complex systems based on neural and Takagi-Sugeno fuzzy model
    • Feb.
    • D. Kukolj and E. Levi, "Identification of complex systems based on neural and Takagi-Sugeno fuzzy model," IEEE Trans. Syst., Man Cybern., Part B: Cybern., vol.34, no.1, pp. 272-282, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man Cybern., Part B: Cybern. , vol.34 , Issue.1 , pp. 272-282
    • Kukolj, D.1    Levi, E.2
  • 12
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi- Sugeno fuzzy models
    • Feb.
    • P. P. Angelov and D. Filev, "An approach to online identification of Takagi- Sugeno fuzzy models," IEEE Trans. Syst.,Man Cybern., Part B: Cybern., vol.34, no.1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst.,Man Cybern., Part B: Cybern. , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.2
  • 13
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • DOI 10.1016/j.fss.2004.03.001, PII S0165011404000843
    • G. Leng, T. M. McGinnity, and G. Prasad, "An approach for on-line extraction of fuzzy rules using a self-organizing fuzzy neural network," Fuzzy Sets Syst., vol.150, no.2, pp. 211-243, 2005. (Pubitemid 40056019)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 16
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • A. J. Smola and B. Scholkopf, "A tutorial on support vector regression," Statist. Comput., vol.14, no.3, pp. 199-222, 2004. (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 17
    • 56049114871 scopus 로고    scopus 로고
    • Predicting the parts weight in plastic injection molding using least squares support vector regression
    • Nov.
    • X. Li, B. Hu, and R. Du, "Predicting the parts weight in plastic injection molding using least squares support vector regression," IEEE Trans. Syst., Man Cybern., Part C: Appl. Rev., vol.38, no.6, pp. 827-833, Nov. 2008.
    • (2008) IEEE Trans. Syst., Man Cybern., Part C: Appl. Rev. , vol.38 , Issue.6 , pp. 827-833
    • Li, X.1    Hu, B.2    Du, R.3
  • 18
    • 54349106864 scopus 로고    scopus 로고
    • A new solution path algorithm in support vector regression
    • Oct.
    • G. Wang, D. Y. Yeung, and F. H. Lochovsky, "A new solution path algorithm in support vector regression," IEEE Trans. Neural Netw., vol.19, no.10, pp. 1753-1767, Oct. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.10 , pp. 1753-1767
    • Wang, G.1    Yeung, D.Y.2    Lochovsky, F.H.3
  • 19
    • 34248677913 scopus 로고    scopus 로고
    • Blind image deconvolution through support vector regression
    • May
    • D. Li, R. M. Mersereau, and S. Simske, "Blind image deconvolution through support vector regression," IEEE Trans. Neural Netw., vol.18, no.3, pp. 931-935, May 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.3 , pp. 931-935
    • Li, D.1    Mersereau, R.M.2    Simske, S.3
  • 20
    • 17644404746 scopus 로고    scopus 로고
    • Interval regression analysis using quadratic loss support vector machine
    • DOI 10.1109/TFUZZ.2004.840133
    • D. H. Hong and C. Hwang, "Interval regression analysis using quadratic loss support vector machine," IEEE Trans. Fuzzy Syst., vol.13, no.2, pp. 229-237, Apr. 2005. (Pubitemid 40556004)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.2 , pp. 229-237
    • Hong, D.H.1    Hwang, C.2
  • 21
    • 34249000692 scopus 로고    scopus 로고
    • Fuzzy weighted support vector regression with a fuzzy partition
    • Jun.
    • C. C. Chuang, "Fuzzy weighted support vector regression with a fuzzy partition," IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol.37, no.3, pp. 630-640, Jun. 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.37 , Issue.3 , pp. 630-640
    • Chuang, C.C.1
  • 22
    • 42549092067 scopus 로고    scopus 로고
    • Fuzzy regression analysis by support vector learning approach
    • Apr.
    • P. Y. Hao and J. H. Chiang, "Fuzzy regression analysis by support vector learning approach," IEEE Trans. Fuzzy Syst., vol.16, no.2, pp. 428-441, Apr. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.2 , pp. 428-441
    • Hao, P.Y.1    Chiang, J.H.2
  • 23
    • 1542333735 scopus 로고    scopus 로고
    • Support vector learning mechanism for fuzzy rule-based modeling: A new approach
    • Jan.
    • J. H. Chiang and P. Y. Hao, "Support vector learning mechanism for fuzzy rule-based modeling: a new approach," IEEE Trans. Fuzzy Syst., vol.12, no.1, pp. 1-11, Jan. 2004.
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , Issue.1 , pp. 1-11
    • Chiang, J.H.1    Hao, P.Y.2
  • 24
    • 27944509100 scopus 로고    scopus 로고
    • Fuzzy neural network design using support vector regression for function approximation with outliers
    • Oct.
    • C. T. Lin, S. F. Liang, C. M. Yeh, K. W. Fan,Fuzzy neural network design using support vector regression for function approximation with outliers. Proc. IEEE Int. Conf. Syst., Man, Cybern. Oct. 2005,no.3,vol1 3,pg 2763-2768.
    • (2005) Proc. IEEE Int. Conf. Syst., Man, Cybern. , vol.3 , Issue.3 , pp. 2763-2768
    • Lin, C.T.1    Liang, S.F.2    Yeh, C.M.3    Fan, K.W.4
  • 25
    • 17644395959 scopus 로고    scopus 로고
    • TSK-fuzzy modeling based on -insensitive learning
    • Apr.
    • J. M. Leski, "TSK-fuzzy modeling based on -insensitive learning," IEEE Trans. Fuzzy Syst., vol.13, no.2, pp. 181-193, Apr. 2005.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.2 , pp. 181-193
    • Leski, J.M.1
  • 27
    • 0031251688 scopus 로고    scopus 로고
    • Identifying chaotic system via a wiener-type cascade model
    • Oct.
    • G. Chen, Y. Chen, and H. Ogmen, "Identifying chaotic system via a wiener-type cascade model," IEEE Trans. Control Syst., vol.17, no.5, pp. 29-36, Oct. 1997.
    • (1997) IEEE Trans. Control Syst. , vol.17 , Issue.5 , pp. 29-36
    • Chen, G.1    Chen, Y.2    Ogmen, H.3
  • 28
    • 28044450377 scopus 로고    scopus 로고
    • A high-order recurrent neuron-fuzzy system with internal dynamics: Application to the adaptive noise cancellation
    • J. B. Theocharis, "A high-order recurrent neuron-fuzzy system with internal dynamics: Application to the adaptive noise cancellation," Fuzzy Sets Syst., vol.157, no.4, pp. 471-500, 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.4 , pp. 471-500
    • Theocharis, J.B.1
  • 30
    • 0032635903 scopus 로고    scopus 로고
    • Noise impact on time-series forecasting using an intelligent pattern matching technique
    • Aug.
    • S. Singh, "Noise impact on time-series forecasting using an intelligent pattern matching technique," Pattern Recognit., vol.32, no.8, pp. 1389- 1398, Aug. 1999.
    • (1999) Pattern Recognit. , vol.32 , Issue.8 , pp. 1389-1398
    • Singh, S.1
  • 31
    • 70349625807 scopus 로고    scopus 로고
    • Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a braincomputer interface
    • Dec.
    • D. Coyle, G. Prasad, and T. M. McGinnity, "Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a braincomputer interface," IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol.39, no.6, pp. 1458-1471, Dec. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.39 , Issue.6 , pp. 1458-1471
    • Coyle, D.1    Prasad, G.2    McGinnity, T.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.