메뉴 건너뛰기




Volumn 19, Issue 1-2, 2011, Pages 27-46

A Constrained Regularization Approach for Input-Driven Recurrent Neural Networks

Author keywords

Recurrent neural networks; Regularization; Reservoir computing

Indexed keywords


EID: 84859722704     PISSN: 09713514     EISSN: 09746870     Source Type: Journal    
DOI: 10.1007/s12591-010-0067-x     Document Type: Article
Times cited : (14)

References (26)
  • 1
    • 0023847221 scopus 로고
    • On the stability, storage capacity, and design of nonlinear continuous neural networks
    • Guez A., Protopopsecu V., Barhen J.: On the stability, storage capacity, and design of nonlinear continuous neural networks. IEEE Trans. Syst. Man Cybernet. 18(1), 80-87 (1988).
    • (1988) IEEE Trans. Syst. Man Cybernet. , vol.18 , Issue.1 , pp. 80-87
    • Guez, A.1    Protopopsecu, V.2    Barhen, J.3
  • 2
    • 0025405546 scopus 로고
    • Stability in contractive nonlinear neural networks
    • Kelly D. G.: Stability in contractive nonlinear neural networks. IEEE Trans. Biomed. Eng. 37, 231-242 (1990).
    • (1990) IEEE Trans. Biomed. Eng. , vol.37 , pp. 231-242
    • Kelly, D.G.1
  • 3
    • 43949155364 scopus 로고
    • On global asymptotic stability of a class of nonlinear systems arising in neural network theory
    • Forti M.: On global asymptotic stability of a class of nonlinear systems arising in neural network theory. J. Differ. Equ. 113, 246-264 (1994).
    • (1994) J. Differ. Equ. , vol.113 , pp. 246-264
    • Forti, M.1
  • 4
    • 0029345226 scopus 로고
    • New Conditions for global stability of neural networks with application to linear and quadratic programming problems
    • Forti M., Tesi A.: New Conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(7), 354-366 (1995).
    • (1995) IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , vol.42 , Issue.7 , pp. 354-366
    • Forti, M.1    Tesi, A.2
  • 5
    • 0030194344 scopus 로고    scopus 로고
    • Stability analysis of dynamical neural networks
    • Fang Y., Kincaid T. G.: Stability analysis of dynamical neural networks. IEEE Trans. Neural Netw. 7(4), 996-1005 (1996).
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.4 , pp. 996-1005
    • Fang, Y.1    Kincaid, T.G.2
  • 6
    • 0036755232 scopus 로고    scopus 로고
    • Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach
    • Liao X., Chen G., Sanchez Edgar N.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Netw. 15(7), 855-866 (2002).
    • (2002) Neural Netw. , vol.15 , Issue.7 , pp. 855-866
    • Liao, X.1    Chen, G.2    Sanchez Edgar, N.3
  • 7
    • 0036825795 scopus 로고    scopus 로고
    • Local structural stability of recurrent networks with time-varying weights
    • Steil J. J.: Local structural stability of recurrent networks with time-varying weights. Neurocomputing 48(1), 39-51 (2002).
    • (2002) Neurocomputing , vol.48 , Issue.1 , pp. 39-51
    • Steil, J.J.1
  • 10
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: unifying the algorithms and accelerating convergence
    • Atiya A. F., Parlos A. G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697-709 (2000).
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 697-709
    • Atiya, A.F.1    Parlos, A.G.2
  • 11
    • 0033344089 scopus 로고    scopus 로고
    • Recurrent learning of input-output stable behaviour in function space: a case study with the Roessler attractor
    • Steil, J. J., Ritter, H.: Recurrent learning of input-output stable behaviour in function space: a case study with the Roessler attractor. In: Proceedings of ICANN, pp. 761-766, 1999.
    • (1999) Proceedings of ICANN , pp. 761-766
    • Steil, J.J.1    Ritter, H.2
  • 12
    • 32544455147 scopus 로고    scopus 로고
    • Online stability of backpropagation-decorrelation recurrent learning
    • Steil J. J.: Online stability of backpropagation-decorrelation recurrent learning. Neurocomputing 69(7-9), 642-650 (2006).
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 642-650
    • Steil, J.J.1
  • 13
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
    • Jäger H., Haas H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78-80 (2004).
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jäger, H.1    Haas, H.2
  • 14
    • 1842436050 scopus 로고    scopus 로고
    • The "echo state" approach to analysing and training recurrent neural networks
    • Jäger, H.: The "echo state" approach to analysing and training recurrent neural networks. GMD Report 148, 2001.
    • (2001) GMD Report , vol.148
    • Jäger, H.1
  • 15
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: a new framework for neural computation based on perturbations
    • Maass W., Natschläger T., Markram H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531-2560 (2002).
    • (2002) Neural Comput. , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 16
    • 10944225085 scopus 로고    scopus 로고
    • Backpropagation-decorrelation: recurrent learning with O(N) complexity
    • Steil, J. J.: Backpropagation-decorrelation: recurrent learning with O(N) complexity. In: Proceedings of IJCNN, vol. 1, pp. 843-848, 2004.
    • (2004) Proceedings of IJCNN , vol.1 , pp. 843-848
    • Steil, J.J.1
  • 19
    • 34249811184 scopus 로고    scopus 로고
    • Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
    • Steil Jochen J.: Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Netw. 20(3), 353-364 (2007).
    • (2007) Neural Netw. , vol.20 , Issue.3 , pp. 353-364
    • Steil Jochen, J.1
  • 20
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky integrator neurons
    • Jaeger H., Lukoševičius M., Popovici D., Siewert U.: Optimization and applications of echo state networks with leaky integrator neurons. Neural Netw. 20, 335-352 (2007).
    • (2007) Neural Netw. , vol.20 , pp. 335-352
    • Jaeger, H.1    Lukoševičius, M.2    Popovici, D.3    Siewert, U.4
  • 21
    • 33846023013 scopus 로고    scopus 로고
    • Analysis and design of echo state networks
    • Ozturk M. C., Xu D., Principe J. C.: Analysis and design of echo state networks. Neural Comput. 19(1), 111-138 (2007).
    • (2007) Neural Comput. , vol.19 , Issue.1 , pp. 111-138
    • Ozturk, M.C.1    Xu, D.2    Principe, J.C.3
  • 23
    • 1842488370 scopus 로고    scopus 로고
    • Short term memory in echo state networks
    • Jäger, H.: Short term memory in echo state networks. GMD Report 152, 2002.
    • (2002) GMD Report , vol.152
    • Jäger, H.1
  • 24
    • 58849145264 scopus 로고    scopus 로고
    • Stable output feedback in reservoir computing using ridge regression
    • Wyffels, F., Schrauwen, B., Stroobandt, D.: Stable output feedback in reservoir computing using ridge regression. In: ICANN, pp. 808-817, 2008.
    • (2008) ICANN , pp. 808-817
    • Wyffels, F.1    Schrauwen, B.2    Stroobandt, D.3
  • 26
    • 12144261601 scopus 로고    scopus 로고
    • Analyzing the weight dynamics of recurrent learning algorithms
    • Schiller U. D., Steil J. J.: Analyzing the weight dynamics of recurrent learning algorithms. Neurocomputing 63C, 5-23 (2005).
    • (2005) Neurocomputing , vol.63 C , pp. 5-23
    • Schiller, U.D.1    Steil, J.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.