메뉴 건너뛰기




Volumn 48, Issue 1-4, 2002, Pages 39-51

Local stability of recurrent networks with time-varying weights and inputs

Author keywords

Input output stability; Linear matrix inequalities; Local structural stability; Recurrent network; Time varying weights

Indexed keywords

CHAOS THEORY; CONFORMAL MAPPING; FUNCTIONS; LYAPUNOV METHODS; MATRIX ALGEBRA; TIME VARYING NETWORKS;

EID: 0036825795     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(01)00657-9     Document Type: Review
Times cited : (14)

References (18)
  • 2
    • 0030194344 scopus 로고    scopus 로고
    • Stability analysis of dynamical neural networks
    • Y. Fang, T.G. Kincaid, Stability analysis of dynamical neural networks, IEEE Trans. Neural Networks 7 (4) (1996) 996-1006.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 996-1006
    • Fang, Y.1    Kincaid, T.G.2
  • 3
    • 0000110128 scopus 로고
    • Sufficient conditions for the stability of interval matrices
    • Y. Fang, K. A. Lopardo, X. Feng, Sufficient conditions for the stability of interval matrices, Int. J. Control 58 (4) (1993) 969-977.
    • (1993) Int. J. Control , vol.58 , Issue.4 , pp. 969-977
    • Fang, Y.1    Lopardo, K.A.2    Feng, X.3
  • 4
    • 0029345226 scopus 로고
    • New conditions for global stability of neural networks with application to linear and quadratic programming problems
    • M. Forti, A. Tesi, New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE Trans. Circuits Systems-I 42 (7) (1995) 354-366.
    • (1995) IEEE Trans. Circuits Systems-I , vol.42 , Issue.7 , pp. 354-366
    • Forti, M.1    Tesi, A.2
  • 5
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • K. Funahashi, Y. Nakamura, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Networks 6 (1993) 801-806.
    • (1993) Neural Networks , vol.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 6
    • 0032664889 scopus 로고    scopus 로고
    • Learning continuous trajectories in recurrent neural networks with time-dependent weights
    • M. Galicki, L. Leistritz, H. Witte, Learning continuous trajectories in recurrent neural networks with time-dependent weights, IEEE Trans. Neural Networks 38 (10) (1999) 714-755.
    • (1999) IEEE Trans. Neural Networks , vol.38 , Issue.10 , pp. 714-755
    • Galicki, M.1    Leistritz, L.2    Witte, H.3
  • 7
    • 0001605981 scopus 로고
    • Exponential stability and trajectory bounds of neural networks under structural variations
    • L.T. Grujic, A.N. Michel, Exponential stability and trajectory bounds of neural networks under structural variations, IEEE Trans. Circuits Systems 38 (10) (1991) 1182-1192.
    • (1991) IEEE Trans. Circuits Systems , vol.38 , Issue.10 , pp. 1182-1192
    • Grujic, L.T.1    Michel, A.N.2
  • 8
    • 0013319907 scopus 로고    scopus 로고
    • Interior point methods online, www-unix.mcs.anl.gov/otc/InteriorPoint/
    • Interior point methods online, www-unix.mcs.anl.gov/otc/InteriorPoint/.
  • 9
    • 0026679036 scopus 로고
    • Stability conditions for nonlinear continuous neural networks with asymmetric connection weights
    • K. Matsuoka, Stability conditions for nonlinear continuous neural networks with asymmetric connection weights, Neural Networks 5 (1992) 495-500.
    • (1992) Neural Networks , vol.5 , pp. 495-500
    • Matsuoka, K.1
  • 11
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • B.A. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Trans. Neural Networks 6 (5) (1995) 1212-1228.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 12
    • 0032121570 scopus 로고    scopus 로고
    • Existence, learning, and replication of periodic motions in recurrent neural networks
    • A. Ruiz, D.H. Owens, S. Townley, Existence, learning, and replication of periodic motions in recurrent neural networks, IEEE Trans. Neural Networks 9 (1998) 651-661.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 651-661
    • Ruiz, A.1    Owens, D.H.2    Townley, S.3
  • 13
    • 0013287877 scopus 로고    scopus 로고
    • (Also: Ph.D. Dissertation, Faculty of Technology, Bielefeld University, 1999.) Cuvillier Verlag, Göttingen
    • J.J. Steil, Input-Output Stability of Recurrent Neural Networks, Cuvillier Verlag, Göttingen, 1999. (Also: Ph.D. Dissertation, Faculty of Technology, Bielefeld University, 1999.)
    • (1999) Input-Output Stability of Recurrent Neural Networks
    • Steil, J.J.1
  • 14
    • 0013270756 scopus 로고    scopus 로고
    • Local input-output stability of recurrent networks with time-varying weights
    • M. Verleysen (Ed.)
    • J.J. Steil. Local input-output stability of recurrent networks with time-varying weights, in: M. Verleysen (Ed.), Proceedings of the ESANN 2000, 2000, pp. 281-286.
    • (2000) Proceedings of the ESANN 2000 , pp. 281-286
    • Steil, J.J.1
  • 15
    • 0033344089 scopus 로고    scopus 로고
    • Recurrent learning of input-output stable behaviour in function space: A case study with the Roessler attractor
    • IEE, London
    • J.J. Steil, H. Ritter, Recurrent learning of input-output stable behaviour in function space: a case study with the Roessler attractor, in: Proceedings of the ICANN 99, IEE, London, 1999, pp. 761-766.
    • (1999) Proceedings of the ICANN 99 , pp. 761-766
    • Steil, J.J.1    Ritter, H.2
  • 16
    • 0013219493 scopus 로고    scopus 로고
    • Maximisation of stability ranges for recurrent neural networks subject to on-line adaptation
    • J.J. Steil, H. Ritter, Maximisation of stability ranges for recurrent neural networks subject to on-line adaptation, In Proceedings of ESANN 99, 1999, pp. 369-374.
    • (1999) Proceedings of ESANN 99 , pp. 369-374
    • Steil, J.J.1    Ritter, H.2
  • 17
    • 0030190515 scopus 로고    scopus 로고
    • On the stability of a family of nonlinear time-varying systems
    • K. Wang, A.N. Michel, On the stability of a family of nonlinear time-varying systems, IEEE Trans. Circuits Systems-I 43 (7) (1996) 517-531.
    • (1996) IEEE Trans. Circuits Systems-I , vol.43 , Issue.7 , pp. 517-531
    • Wang, K.1    Michel, A.N.2
  • 18
    • 0035258563 scopus 로고    scopus 로고
    • A competitive layer model for feature binding and sensory segmentation
    • H. Wersing, J.J. Steil, H. Ritter, A competitive layer model for feature binding and sensory segmentation, Neural Comput. 13 (2) (2001) 357-387.
    • (2001) Neural Comput. , vol.13 , Issue.2 , pp. 357-387
    • Wersing, H.1    Steil, J.J.2    Ritter, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.