메뉴 건너뛰기




Volumn 6, Issue 1, 2012, Pages 92-119

Gender Classification from Face Images Using Mutual Information and Feature Fusion

Author keywords

Feature fusion; feature selection; gender classification; mutual information; real time gender classification

Indexed keywords

CONDITIONAL MUTUAL INFORMATION; FACE IMAGES; FEATURE FUSION; FERET DATABASE; FRONTAL FACES; FUSION OF FEATURES; GENDER CLASSIFICATION; MAXIMAL RELEVANCE; MUTUAL INFORMATION MEASURES; MUTUAL INFORMATIONS; NORMALIZED MUTUAL INFORMATION; SPATIAL SCALE;

EID: 84859509758     PISSN: 15599612     EISSN: 15599620     Source Type: Journal    
DOI: 10.1080/15599612.2012.663463     Document Type: Article
Times cited : (42)

References (42)
  • 2
    • 77953140341 scopus 로고    scopus 로고
    • Gender recognition: A multiscale decision fusion approach
    • Alexandre, Luís A. 2010. Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31 (11): 1422-1427.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.11 , pp. 1422-1427
    • Alexandre, L.A.1
  • 7
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • Chow, T. W. S. and D. Huang. 2005. Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information. IEEE Transactions on Neural Networks 16 (1): 213-224.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 213-224
    • Chow, T.W.S.1    Huang, D.2
  • 10
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding, C. and H. Peng. 2003. Minimum redundancy feature selection from microarray gene expression data. IEEE Bioinformatics Conf.523-528.
    • (2003) IEEE Bioinformatics Conf , pp. 523-528
    • Ding, C.1    Peng, H.2
  • 13
    • 51849117118 scopus 로고    scopus 로고
    • Labeled faces in the wild: A database for studying face recognition in unconstrained environments
    • University of Massachusetts, Amberst Tech. Rep. 07 October
    • Huang G. B., M. Ramesh, T. Berg, and E. Learned-Miller. 2007. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. University of Massachusetts, Amberst, Tech. Rep. 07 49, October 2007.
    • (2007) , pp. 49
    • Huang, G.B.1    Ramesh, M.2    Berg, T.3    Learned-Miller, E.4
  • 15
    • 78649318695 scopus 로고    scopus 로고
    • A compact local binary pattern using maximun of mutual information for face analysis
    • Jun, B., T. Kim, and D. Kim. 2011. A compact local binary pattern using maximun of mutual information for face analysis. Pattern Recognition 44 (3): 532-543.
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 532-543
    • Jun, B.1    Kim, T.2    Kim, D.3
  • 17
    • 39549093773 scopus 로고    scopus 로고
    • Evaluation of gender classification methods with automatically detected and aligned faces
    • Makinen, E. and R. Raisamo. 2008a. Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (3): 541-547.
    • (2008) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.30 , Issue.3 , pp. 541-547
    • Makinen, E.1    Raisamo, R.2
  • 18
    • 44449124660 scopus 로고    scopus 로고
    • An experimental comparison of gender classifications methods
    • Makinen, E. and R. Raisamo. 2008b. An experimental comparison of gender classifications methods. Pattern Recognition Letters 29 (10): 1544-1556.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.10 , pp. 1544-1556
    • Makinen, E.1    Raisamo, R.2
  • 19
    • 63049138724 scopus 로고    scopus 로고
    • Improving Face gender classification by adding deliberately misaligned faces to the training data
    • Mayo, M. and E. Zhang. 2008. Improving Face gender classification by adding deliberately misaligned faces to the training data. Proc. 23rd Int. Conf. Image and Vision Computing NZ, IVCNZ08 1-5.
    • (2008) Proc. 23rd Int. Conf. Image and Vision Computing NZ, IVCNZ08 , pp. 1-5
    • Mayo, M.1    Zhang, E.2
  • 22
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, Hanchuan, Fuhui Long, and C. Ding. 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (8): 1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 26
    • 78650271930 scopus 로고    scopus 로고
    • Genetic optimisation of illumination compensation methods in cascade for face recognition
    • Perez, C. A., L. E. Castillo, L. A. Cament, P. A. Estevez, and C. M. Held. 2010a. Genetic optimisation of illumination compensation methods in cascade for face recognition. Electronics Letters 46 (7): 498-500.
    • (2010) Electronics Letters , vol.46 , Issue.7 , pp. 498-500
    • Perez, C.A.1    Castillo, L.E.2    Cament, L.A.3    Estevez, P.A.4    Held, C.M.5
  • 27
  • 28
    • 78650275922 scopus 로고    scopus 로고
    • Methodological improvement on local Gabor face recognition based on feature selection and enhanced Borda count
    • Perez, C. A., L. A. Cament, and L. E. Castillo. 2011. Methodological improvement on local Gabor face recognition based on feature selection and enhanced Borda count. Pattern Recognition 44 (4): 951-963.
    • (2011) Pattern Recognition , vol.44 , Issue.4 , pp. 951-963
    • Perez, C.A.1    Cament, L.A.2    Castillo, L.E.3
  • 30
    • 57649205805 scopus 로고    scopus 로고
    • Using the real, gentle and modest AdaBoost learning algorithms to investigate the computerised associations between Coronal Mass Ejections and filaments
    • Qahwaji, R., M. Al-Omari, T. Colak, and S. Ipson. 2008. Using the real, gentle and modest AdaBoost learning algorithms to investigate the computerised associations between Coronal Mass Ejections and filaments. Proc. Mosharaka Int. Conf. Communications, Computer and Applications 37-42.
    • (2008) Proc. Mosharaka Int. Conf. Communications, Computer and Applications , pp. 37-42
    • Qahwaji, R.1    Al-Omari, M.2    Colak, T.3    Ipson, S.4
  • 32
    • 78651088586 scopus 로고    scopus 로고
    • Real Adaboost feature selection for face recognition
    • Ruan, Chengxiong, Qiuqi Ruan, and Xiaoli Li. 2010. Real Adaboost feature selection for face recognition. IEEE Int Signal Processing 1402-1405.
    • (2010) IEEE Int Signal Processing , pp. 1402-1405
    • Ruan, C.1    Ruan, Q.2    Li, X.3
  • 34
    • 84855670840 scopus 로고    scopus 로고
    • Learning local binary patterns for gender classification on real-world face images
    • Shan C. 2012. Learning local binary patterns for gender classification on real-world face images. Pattern Recognition Letters 33 (4): 431-437.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.4 , pp. 431-437
    • Shan, C.1
  • 35
    • 12344273544 scopus 로고    scopus 로고
    • Object detection using feature subset selection
    • Sun, Z., G. Bebis, and R. Miller. 2004. Object detection using feature subset selection. Pattern Recognition 37 (11): 2165-2176.
    • (2004) Pattern Recognition , vol.37 , Issue.11 , pp. 2165-2176
    • Sun, Z.1    Bebis, G.2    Miller, R.3
  • 37
    • 67651094647 scopus 로고    scopus 로고
    • Modest Adaboost-teaching Adabost to generalize better
    • Vezhnevets, A. and V. Vezhnevets. 2005. Modest Adaboost-teaching Adabost to generalize better. Proc. Graphicon 1-12.
    • (2005) Proc. Graphicon , pp. 1-12
    • Vezhnevets, A.1    Vezhnevets, V.2
  • 38
    • 78649238560 scopus 로고    scopus 로고
    • An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information
    • Vinh, L. T., N. D. Thang, and Y.-K. Lee. 2010. An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. Proc. 10th Int. Symp. IEEE/IPSJ Applications and Internet (SAINT) 395-398.
    • (2010) Proc. 10th Int. Symp. IEEE/IPSJ Applications and Internet (SAINT) , pp. 395-398
    • Vinh, L.T.1    Thang, N.D.2    Lee, Y.-K.3
  • 42
    • 77649337313 scopus 로고    scopus 로고
    • Facial gender classification using shape-from-shading
    • Wu, Jing, William A. P. Smith, and Edwin R. Hancock. 2010. Facial gender classification using shape-from-shading. Image and Vision Computing 28 (6): 1039-1048.
    • (2010) Image and Vision Computing , vol.28 , Issue.6 , pp. 1039-1048
    • Wu, J.1    Smith, W.A.P.2    Hancock, E.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.