-
1
-
-
9644265275
-
A feature selection technique for classificatory analysis
-
A. Ahmad and L. Dey. A feature selection technique for classificatory analysis. Pattern Recognition Letter, 26(1):43-56, 2005.
-
(2005)
Pattern Recognition Letter
, vol.26
, Issue.1
, pp. 43-56
-
-
Ahmad, A.1
Dey, L.2
-
2
-
-
0034598746
-
-
A. A. Alizadeh, M. B. Eisen, R. E. David, and al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 03:503-511, 2000.
-
A. A. Alizadeh, M. B. Eisen, R. E. David, and al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 03:503-511, 2000.
-
-
-
-
3
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R. Battiti. Using mutual information for selecting features in supervised neural net learning. IEEE Transaction Neural Networks, 5(4):537-550, 1994.
-
(1994)
IEEE Transaction Neural Networks
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
5
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares, and D. Haussler. Knowledge-based analysis of microarray gene expression data by using support vector machines. In Proceedings of the National Academy of Sciences, page 262267, 2000.
-
(2000)
Proceedings of the National Academy of Sciences
, pp. 262267
-
-
Brown, M.1
Grundy, W.2
Lin, D.3
Cristianini, N.4
Sugnet, C.5
Furey, T.6
Ares, M.7
Haussler, D.8
-
6
-
-
0006500676
-
Greedy attribute selection
-
New Brunswick, NJ, USA
-
R. Caruana and D. Freitag. Greedy attribute selection. In Proceedings of the 11th International Conference on Machine Learning, ICML 1994, New Brunswick, NJ, USA, pages 28-36, 1994.
-
(1994)
Proceedings of the 11th International Conference on Machine Learning, ICML 1994
, pp. 28-36
-
-
Caruana, R.1
Freitag, D.2
-
7
-
-
84942213019
-
The best two independent measurements are not the two best
-
T. Cover. The best two independent measurements are not the two best. IEEE Transactions on Systems, Man, and Cybernetics, 4:116-117, 1974.
-
(1974)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.4
, pp. 116-117
-
-
Cover, T.1
-
8
-
-
0013326060
-
Feature selection for classification
-
M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1:131-156, 1997.
-
(1997)
Intelligent Data Analysis
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
9
-
-
5444264485
-
Minimum redundancy feature selection from microarray gene expression data
-
C. Ding and P. H. Minimum redundancy feature selection from microarray gene expression data. In Proceeding Computational Systems Bioinformatics, page 523528, 2003.
-
(2003)
Proceeding Computational Systems Bioinformatics
, pp. 523528
-
-
Ding, C.1
-
10
-
-
0003552733
-
An evaluation of feature selection methods and their application to computer security. Technical Report 92-18
-
University of California at Davis, California
-
J. Doak. An evaluation of feature selection methods and their application to computer security. Technical Report 92-18, CSE Technical Report, University of California at Davis, California, 1992.
-
(1992)
CSE Technical Report
-
-
Doak, J.1
-
12
-
-
0033569406
-
Classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. Golub, D. Slonim, and P. Tamayo. Classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 28:531-537, 1999.
-
(1999)
Science
, vol.28
, pp. 531-537
-
-
Golub, T.1
Slonim, D.2
Tamayo, P.3
-
14
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and al. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
and al4
-
16
-
-
0003507805
-
The wrapper approach, in feature selection for knowledge discovery and data mining
-
J. Kohavi and G. H. John. The wrapper approach, in feature selection for knowledge discovery and data mining. Machine Learning, pages 33-50, 1998.
-
(1998)
Machine Learning
, pp. 33-50
-
-
Kohavi, J.1
John, G.H.2
-
17
-
-
0000012317
-
Towards optimal feature selection
-
Bari, Italy
-
D. Koller and M. Sahami. Towards optimal feature selection. In Proceedings of the 13th International Conference on Machine Learning, ICML 1996, Bari, Italy, pages 87-95, 1996.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning, ICML 1996
, pp. 87-95
-
-
Koller, D.1
Sahami, M.2
-
18
-
-
0035224384
-
Feature selection for dna methylation based cancer classification
-
F. Model, P. Adorjan, A. Olek, and C. Piepenbrock. Feature selection for dna methylation based cancer classification. Bioinformatics, 17:157164, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 157164
-
-
Model, F.1
Adorjan, P.2
Olek, A.3
Piepenbrock, C.4
-
20
-
-
4744365291
-
Comprehensive vertical sample based knn/lsvm classification for gene expression analysis
-
F. Pan, B. Wang, X. Hu, and al. Comprehensive vertical sample based knn/lsvm classification for gene expression analysis. Journal of Biomedical Informatics, 37:280288, 2004.
-
(2004)
Journal of Biomedical Informatics
, vol.37
, pp. 280288
-
-
Pan, F.1
Wang, B.2
Hu, X.3
and al4
-
22
-
-
0344872506
-
Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines
-
S. Peng, Q. Xu, X. Ling, and al. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Letters, 555:358362, 2003.
-
(2003)
FEBS Letters
, vol.555
, pp. 358362
-
-
Peng, S.1
Xu, Q.2
Ling, X.3
and al4
-
23
-
-
0034050902
-
Systematic variation in gene expression patterns in human cancer cell lines
-
D. T. Ross, U. Scherf, M. B. Eisen, and al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24:227-235, 2000.
-
(2000)
Nature Genetics
, vol.24
, pp. 227-235
-
-
Ross, D.T.1
Scherf, U.2
Eisen, M.B.3
and al4
-
24
-
-
3042527351
-
Fast branch and bound algorithms for optimal feature selection
-
P. Somol, P. Pudil, and J.Kittler. Fast branch and bound algorithms for optimal feature selection. IEEE Transaction on Pattern Analysis and Machine Intelligence, 26(7):900-912, 2004.
-
(2004)
IEEE Transaction on Pattern Analysis and Machine Intelligence
, vol.26
, Issue.7
, pp. 900-912
-
-
Somol, P.1
Pudil, P.2
Kittler, J.3
-
26
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13:4449, 1998.
-
(1998)
IEEE Intelligent Systems
, vol.13
, pp. 4449
-
-
Yang, J.1
Honavar, V.2
|