메뉴 건너뛰기




Volumn , Issue , 2009, Pages 69-75

A new gene selection approach based on Minimum Redundancy-Maximum Relevance (MRMR) and Genetic Algorithm (GA)

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ,; CLASSIFICATION PERFORMANCE; DATA SETS; GA ALGORITHM; GENE EXPRESSION DATA; GENE SELECTION; HIGH-DIMENSIONAL; INFORMATIVE GENES; MICROARRAY DATA; NUMBER OF SAMPLES; PRACTICAL IMPORTANCE; SELECTION ALGORITHM; TWO STAGE;

EID: 70350022582     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AICCSA.2009.5069306     Document Type: Conference Paper
Times cited : (34)

References (26)
  • 1
    • 9644265275 scopus 로고    scopus 로고
    • A feature selection technique for classificatory analysis
    • A. Ahmad and L. Dey. A feature selection technique for classificatory analysis. Pattern Recognition Letter, 26(1):43-56, 2005.
    • (2005) Pattern Recognition Letter , vol.26 , Issue.1 , pp. 43-56
    • Ahmad, A.1    Dey, L.2
  • 2
    • 0034598746 scopus 로고    scopus 로고
    • A. A. Alizadeh, M. B. Eisen, R. E. David, and al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 03:503-511, 2000.
    • A. A. Alizadeh, M. B. Eisen, R. E. David, and al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 03:503-511, 2000.
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti. Using mutual information for selecting features in supervised neural net learning. IEEE Transaction Neural Networks, 5(4):537-550, 1994.
    • (1994) IEEE Transaction Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 8
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1:131-156, 1997.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 9
    • 5444264485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • C. Ding and P. H. Minimum redundancy feature selection from microarray gene expression data. In Proceeding Computational Systems Bioinformatics, page 523528, 2003.
    • (2003) Proceeding Computational Systems Bioinformatics , pp. 523528
    • Ding, C.1
  • 10
    • 0003552733 scopus 로고
    • An evaluation of feature selection methods and their application to computer security. Technical Report 92-18
    • University of California at Davis, California
    • J. Doak. An evaluation of feature selection methods and their application to computer security. Technical Report 92-18, CSE Technical Report, University of California at Davis, California, 1992.
    • (1992) CSE Technical Report
    • Doak, J.1
  • 12
    • 0033569406 scopus 로고    scopus 로고
    • Classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. Golub, D. Slonim, and P. Tamayo. Classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 28:531-537, 1999.
    • (1999) Science , vol.28 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and al. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    and al4
  • 16
    • 0003507805 scopus 로고    scopus 로고
    • The wrapper approach, in feature selection for knowledge discovery and data mining
    • J. Kohavi and G. H. John. The wrapper approach, in feature selection for knowledge discovery and data mining. Machine Learning, pages 33-50, 1998.
    • (1998) Machine Learning , pp. 33-50
    • Kohavi, J.1    John, G.H.2
  • 18
    • 0035224384 scopus 로고    scopus 로고
    • Feature selection for dna methylation based cancer classification
    • F. Model, P. Adorjan, A. Olek, and C. Piepenbrock. Feature selection for dna methylation based cancer classification. Bioinformatics, 17:157164, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 157164
    • Model, F.1    Adorjan, P.2    Olek, A.3    Piepenbrock, C.4
  • 20
    • 4744365291 scopus 로고    scopus 로고
    • Comprehensive vertical sample based knn/lsvm classification for gene expression analysis
    • F. Pan, B. Wang, X. Hu, and al. Comprehensive vertical sample based knn/lsvm classification for gene expression analysis. Journal of Biomedical Informatics, 37:280288, 2004.
    • (2004) Journal of Biomedical Informatics , vol.37 , pp. 280288
    • Pan, F.1    Wang, B.2    Hu, X.3    and al4
  • 22
    • 0344872506 scopus 로고    scopus 로고
    • Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines
    • S. Peng, Q. Xu, X. Ling, and al. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Letters, 555:358362, 2003.
    • (2003) FEBS Letters , vol.555 , pp. 358362
    • Peng, S.1    Xu, Q.2    Ling, X.3    and al4
  • 23
    • 0034050902 scopus 로고    scopus 로고
    • Systematic variation in gene expression patterns in human cancer cell lines
    • D. T. Ross, U. Scherf, M. B. Eisen, and al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24:227-235, 2000.
    • (2000) Nature Genetics , vol.24 , pp. 227-235
    • Ross, D.T.1    Scherf, U.2    Eisen, M.B.3    and al4
  • 26
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13:4449, 1998.
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 4449
    • Yang, J.1    Honavar, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.