메뉴 건너뛰기




Volumn , Issue , 2004, Pages 285-292

Adaptation of maximum entropy capitalizer: Little data can help a lot

Author keywords

[No Author keywords available]

Indexed keywords

MAXIMUM ENTROPY METHODS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84890506043     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (86)

References (11)
  • 2
    • 0028576341 scopus 로고
    • Some Advances in Transformation-Based Part of Speech Tagging
    • Eric Brill. 1994. Some Advances in Transformation-Based Part of Speech Tagging. In National Conference on Artificial Intelligence, pages 722-727.
    • (1994) National Conference on Artificial Intelligence , pp. 722-727
    • Brill, Eric1
  • 4
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms
    • University of Pennsylvania, Philadelphia, PA, July. ACL
    • Michael Collins. 2002. Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1-8, University of Pennsylvania, Philadelphia, PA, July. ACL.
    • (2002) Proceedings of the Conference on Empirical Methods in Natural Language Processing , pp. 1-8
    • Collins, Michael1
  • 5
    • 85117711027 scopus 로고    scopus 로고
    • Exponential Priors for Maximum Entropy Models
    • Daniel Marcu Susan Dumais and Salim Roukos, editors, pages Boston, Massachusetts, USA, May 2 May 7. Association for Computational Linguistics
    • Joshua Goodman. 2004. Exponential Priors for Maximum Entropy Models. In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLTNAACL 2004: Main Proceedings, pages 305-312, Boston, Massachusetts, USA, May 2 - May 7. Association for Computational Linguistics.
    • (2004) HLTNAACL 2004: Main Proceedings , pp. 305-312
    • Goodman, Joshua1
  • 6
    • 0347761231 scopus 로고    scopus 로고
    • Automatic Capitalization Generation for Speech Input
    • January
    • Ji-Hwan Kim and Philip C. Woodland. 2004. Automatic Capitalization Generation for Speech Input. Computer Speech and Language, 18(1):67-90, January.
    • (2004) Computer Speech and Language , vol.18 , Issue.1 , pp. 67-90
    • Kim, Ji-Hwan1    Woodland, Philip C.2
  • 7
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
    • Morgan Kaufmann, San Francisco, CA
    • John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proc. 18th International Conf. on Machine Learning, pages 282-289. Morgan Kaufmann, San Francisco, CA.
    • (2001) Proc. 18th International Conf. on Machine Learning , pp. 282-289
    • Lafferty, John1    McCallum, Andrew2    Pereira, Fernando3
  • 10
    • 0003905689 scopus 로고
    • Technical Report CMU-CS-95-144, School of Computer Science, Carnegie Mellon University, Pitts-burg, PA
    • S. Della Pietra, V. Della Pietra, and J. Lafferty. 1995. Inducing features of random fields. Technical Report CMU-CS-95-144, School of Computer Science, Carnegie Mellon University, Pitts-burg, PA.
    • (1995) Inducing features of random fields
    • Della Pietra, S.1    Della Pietra, V.2    Lafferty, J.3
  • 11
    • 85124016637 scopus 로고    scopus 로고
    • A Maximum Entropy Model for Part-of-Speech Tagging
    • Eric Brill and Kenneth Church, editors, pages Association for Computational Linguistics, Somerset, New Jersey
    • Adwait Ratnaparkhi. 1996. A Maximum Entropy Model for Part-of-Speech Tagging. In Eric Brill and Kenneth Church, editors, Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 133-142. Association for Computational Linguistics, Somerset, New Jersey.
    • (1996) Proceedings of the Conference on Empirical Methods in Natural Language Processing , pp. 133-142
    • Ratnaparkhi, Adwait1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.