메뉴 건너뛰기




Volumn 36, Issue 7, 2012, Pages 2911-2919

A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction

Author keywords

Hybrid training approach; Radial basis function network; Time series modeling

Indexed keywords

AUTOMATIC SELECTION; GRADIENT BASED; HIDDEN NODES; HYBRID ALGORITHMS; HYBRID APPROACH; HYBRID TRAINING; INPUT VARIABLES; MODELING ACCURACY; NETWORK PARAMETERS; NONLINEAR TIME SERIES; PARAMETER ESTIMATION METHOD; PREDICTION PROBLEM; RADIAL BASIS FUNCTIONS; REAL-CODED; TIME SERIES MODELING;

EID: 84858335611     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2011.09.066     Document Type: Article
Times cited : (59)

References (34)
  • 1
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G.P., Patuw B.E., Hu M. Forecasting with artificial neural networks: the state of the art. Int. J. Forecasting 1998, 14:35-62.
    • (1998) Int. J. Forecasting , vol.14 , pp. 35-62
    • Zhang, G.P.1    Patuw, B.E.2    Hu, M.3
  • 2
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • Zhang G.P. A neural network ensemble method with jittered training data for time series forecasting. Inform. Sci. 2007, 177:5329-5346.
    • (2007) Inform. Sci. , vol.177 , pp. 5329-5346
    • Zhang, G.P.1
  • 3
    • 81155123024 scopus 로고    scopus 로고
    • Stability analysis of RBF network-based state-dependent model for nonlinear time series
    • Gan M., Peng H. Stability analysis of RBF network-based state-dependent model for nonlinear time series. Appl. Soft Comput. 2011, 10.1016/j.asoc.2011.08.055.
    • (2011) Appl. Soft Comput.
    • Gan, M.1    Peng, H.2
  • 4
    • 0035307307 scopus 로고    scopus 로고
    • Time-series forecasting using GA-tuned radial basis functions
    • Sheta A.F., Jong K.D. Time-series forecasting using GA-tuned radial basis functions. Inform. Sci. 2001, 133:221-228.
    • (2001) Inform. Sci. , vol.133 , pp. 221-228
    • Sheta, A.F.1    Jong, K.D.2
  • 5
    • 0036131610 scopus 로고    scopus 로고
    • Time series analysis using normalized PG-RBF network with regression weights
    • Rojas I., Pomares H., Bernier J.L., Ortega J., et al. Time series analysis using normalized PG-RBF network with regression weights. Neurocomputing 2002, 42:267-285.
    • (2002) Neurocomputing , vol.42 , pp. 267-285
    • Rojas, I.1    Pomares, H.2    Bernier, J.L.3    Ortega, J.4
  • 6
    • 5144219995 scopus 로고    scopus 로고
    • Evolving RBF neural networks for time-series forecasting with EvRBF
    • Rivas V.M., Merelo J.J., Castillo P.A., et al. Evolving RBF neural networks for time-series forecasting with EvRBF. Inform. Sci. 2004, 165:207-220.
    • (2004) Inform. Sci. , vol.165 , pp. 207-220
    • Rivas, V.M.1    Merelo, J.J.2    Castillo, P.A.3
  • 7
    • 33748424239 scopus 로고    scopus 로고
    • The effect of different basis functions on a radial basis function network for time series prediction: A comparative study
    • Harpham C., Dawson C.W. The effect of different basis functions on a radial basis function network for time series prediction: A comparative study. Neurocomputing 2006, 69(16):2161-2170.
    • (2006) Neurocomputing , vol.69 , Issue.16 , pp. 2161-2170
    • Harpham, C.1    Dawson, C.W.2
  • 8
    • 40649090413 scopus 로고    scopus 로고
    • Time series prediction using evolving radial basis function networks with new encoding scheme
    • Du H., Zhang N. Time series prediction using evolving radial basis function networks with new encoding scheme. Neurocomputing 2008, 71:1388-1400.
    • (2008) Neurocomputing , vol.71 , pp. 1388-1400
    • Du, H.1    Zhang, N.2
  • 9
    • 45849083126 scopus 로고    scopus 로고
    • Time series forecasting with a non-linear model and the scatter search meta-heuristic
    • da Silva C.A. Time series forecasting with a non-linear model and the scatter search meta-heuristic. Inform. Sci. 2008, 178:3288-3299.
    • (2008) Inform. Sci. , vol.178 , pp. 3288-3299
    • da Silva, C.A.1
  • 10
    • 79953130539 scopus 로고    scopus 로고
    • A hybrid approach for parameter optimization of RBF-AR model, in: Proceedings of 49th IEEE Conference on Decision and Control (CDC2010), Atlanta, GA, USA
    • M. Gan, H. Peng, A hybrid approach for parameter optimization of RBF-AR model, in: Proceedings of 49th IEEE Conference on Decision and Control (CDC2010), Atlanta, GA, USA, 2010, pp. 4423-4428.
    • (2010) , pp. 4423-4428
    • Gan, M.1    Peng, H.2
  • 11
    • 77956393917 scopus 로고    scopus 로고
    • A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling and prediction
    • Gan M., Peng H., et al. A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling and prediction. Inform. Sci. 2010, 180:4370-4383.
    • (2010) Inform. Sci. , vol.180 , pp. 4370-4383
    • Gan, M.1    Peng, H.2
  • 12
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D., Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2:321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 13
    • 0035314205 scopus 로고    scopus 로고
    • A simulation study of artificial neural networks for nonlinear time-series foresting
    • Zhang G.P., Patuwo B.E., Hu M.Y. A simulation study of artificial neural networks for nonlinear time-series foresting. Comput. Oper. Res. 2001, 28:381-396.
    • (2001) Comput. Oper. Res. , vol.28 , pp. 381-396
    • Zhang, G.P.1    Patuwo, B.E.2    Hu, M.Y.3
  • 14
    • 55649119349 scopus 로고    scopus 로고
    • Structural and parametric design of fuzzy inference systems using HFC-based parallel genetic algorithms and information granulation
    • Choi J.-N., Oh S.-K., Pedrycz W. Structural and parametric design of fuzzy inference systems using HFC-based parallel genetic algorithms and information granulation. Int. J. Approx. Reas. (IJAR) 2008, 49(3):631-648.
    • (2008) Int. J. Approx. Reas. (IJAR) , vol.49 , Issue.3 , pp. 631-648
    • Choi, J.-N.1    Oh, S.-K.2    Pedrycz, W.3
  • 15
    • 6344287812 scopus 로고    scopus 로고
    • A review of genetic algorithms applied to training radial basis function networks
    • Harpham C., Dawson C.W. A review of genetic algorithms applied to training radial basis function networks. Neural Comput. Appl. 2004, 13:193-201.
    • (2004) Neural Comput. Appl. , vol.13 , pp. 193-201
    • Harpham, C.1    Dawson, C.W.2
  • 16
    • 0030104504 scopus 로고    scopus 로고
    • Global optimization for neural network training
    • Shang Y., Wah B.W. Global optimization for neural network training. IEEE Comput. 1996, 29(3):45-54.
    • (1996) IEEE Comput. , vol.29 , Issue.3 , pp. 45-54
    • Shang, Y.1    Wah, B.W.2
  • 17
    • 0037359808 scopus 로고    scopus 로고
    • A parameter optimization method for radial basis function type models
    • Peng H., Ozaki T., Haggan-Ozaki V., Toyoda Y. A parameter optimization method for radial basis function type models. IEEE Trans. Neural Netw. 2003, 14:432-438.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , pp. 432-438
    • Peng, H.1    Ozaki, T.2    Haggan-Ozaki, V.3    Toyoda, Y.4
  • 18
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indus. Appl. Math. 1963, 11:431-441.
    • (1963) J. Soc. Indus. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 21
    • 84858343302 scopus 로고    scopus 로고
    • SpeedyGA: A Fast Simple Genetic Algorithm
    • K. Burjorjee, SpeedyGA: A Fast Simple Genetic Algorithm, 2007. http://www.mathworks.com/matlabcentral/fileexchange/15164.
    • (2007)
    • Burjorjee, K.1
  • 22
    • 84858335543 scopus 로고    scopus 로고
    • (n.d.) Time Series Data Library
    • R.J. Hyndman, (n.d.) Time Series Data Library, 2010. http://robjhyndman.com/TSDL.
    • (2010)
    • Hyndman, R.J.1
  • 23
    • 0003361969 scopus 로고
    • Time Series Analysis
    • Holden Day, San Francisco, CA
    • Box G., Jenkins G. Time Series Analysis. Forecasting and Control 1970, Holden Day, San Francisco, CA.
    • (1970) Forecasting and Control
    • Box, G.1    Jenkins, G.2
  • 24
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19:716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 25
    • 33749382626 scopus 로고    scopus 로고
    • Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme
    • Kim M., Kim C., Lee J. Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme. IEEE Trans. Syst. Man Cybernet. 2006, 36(5):1006-1023.
    • (2006) IEEE Trans. Syst. Man Cybernet. , vol.36 , Issue.5 , pp. 1006-1023
    • Kim, M.1    Kim, C.2    Lee, J.3
  • 26
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Lin Y., Cunningham G.A. A new approach to fuzzy-neural system modeling. IEEE Trans. Fuzzy Syst. 1995, 3(2):190-197.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-197
    • Lin, Y.1    Cunningham, G.A.2
  • 27
    • 0029323249 scopus 로고
    • Constructing fuzzy model by self-organizing counter-propagation network
    • Nie J. Constructing fuzzy model by self-organizing counter-propagation network. IEEE Trans. Syst. Man Cybernet. 1995, 25(6):963-970.
    • (1995) IEEE Trans. Syst. Man Cybernet. , vol.25 , Issue.6 , pp. 963-970
    • Nie, J.1
  • 28
    • 50149097761 scopus 로고    scopus 로고
    • Identification of fuzzy models using a successive tuning method with a variant identification ratio
    • Choi J.-N., Oh S.-K., Pedrycz W. Identification of fuzzy models using a successive tuning method with a variant identification ratio. Fuzzy Sets Syst. 2008, 159(21):2873-2889.
    • (2008) Fuzzy Sets Syst. , vol.159 , Issue.21 , pp. 2873-2889
    • Choi, J.-N.1    Oh, S.-K.2    Pedrycz, W.3
  • 29
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 30
    • 21244438033 scopus 로고    scopus 로고
    • Time series forecasting using flexible neural tree model
    • Chen Y., Yang B., Dong J., Abraham A. Time series forecasting using flexible neural tree model. Inform. Sci. 2005, 174:219-235.
    • (2005) Inform. Sci. , vol.174 , pp. 219-235
    • Chen, Y.1    Yang, B.2    Dong, J.3    Abraham, A.4
  • 31
    • 33750535466 scopus 로고    scopus 로고
    • Predicting chaotic time series using neural and neurofuzzy models: a comparative study
    • Gholipour A., Araabi B.N., Lucas C. Predicting chaotic time series using neural and neurofuzzy models: a comparative study. Neural Process. Letter. 2006, 24:217-239.
    • (2006) Neural Process. Letter. , vol.24 , pp. 217-239
    • Gholipour, A.1    Araabi, B.N.2    Lucas, C.3
  • 32
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybernet. 1993, 23(3):665-685.
    • (1993) IEEE Trans. Syst. Man Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 33
    • 78649789083 scopus 로고    scopus 로고
    • Hybrid optimization of information granulation-based fuzzy radial basis function neural networks
    • Choi J.-N., Oh S.-K., Kim H.-K. Hybrid optimization of information granulation-based fuzzy radial basis function neural networks. Int. J. Intell. Comput. Cybernet. (IJICC) 2010, 3(4):593-610.
    • (2010) Int. J. Intell. Comput. Cybernet. (IJICC) , vol.3 , Issue.4 , pp. 593-610
    • Choi, J.-N.1    Oh, S.-K.2    Kim, H.-K.3
  • 34
    • 60649117130 scopus 로고    scopus 로고
    • Identification of fuzzy relation model using hierarchical fair competition-based parallel genetic algorithms and information granulation
    • Choi J.-N., Oh S.-K., Pedrycz W. Identification of fuzzy relation model using hierarchical fair competition-based parallel genetic algorithms and information granulation. Appl. Math. Model. 2009, 33(6):2791-2807.
    • (2009) Appl. Math. Model. , vol.33 , Issue.6 , pp. 2791-2807
    • Choi, J.-N.1    Oh, S.-K.2    Pedrycz, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.