메뉴 건너뛰기




Volumn 13, Issue 3, 2004, Pages 193-201

A review of genetic algorithms applied to training radial basis function networks

Author keywords

Artificial neural network; Genetic algorithm; Multilayer perceptron; Radial basis function

Indexed keywords

APPROXIMATION THEORY; DATA REDUCTION; GENETIC ALGORITHMS; LEARNING SYSTEMS; PROBLEM SOLVING; RANDOM PROCESSES;

EID: 6344287812     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-004-0404-5     Document Type: Article
Times cited : (120)

References (76)
  • 1
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Park J, Sandberg IW (1991) Universal approximation using radial basis function networks, Neur Comput 3(2):246-257
    • (1991) Neur Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neur Netw 2:359-366
    • (1989) Neur Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 6
    • 0000621802 scopus 로고
    • Multivariable function interpolation and adaptive networks
    • Broomhead DS, Lowe D (1988) Multivariable function interpolation and adaptive networks. Comp Sys 2:321-355
    • (1988) Comp Sys , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 7
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody JE, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neur Comput 1(2):281-294
    • (1989) Neur Comput , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.E.1    Darken, C.J.2
  • 8
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • Mason JC, Cox MG (eds), Clarendon Press, Oxford, UK
    • Powell MJD (1987) Radial basis functions for multivariable interpolation: a review, In: Mason JC, Cox MG (eds) Algorithms for approximation, Clarendon Press, Oxford, UK
    • (1987) Algorithms for Approximation
    • Powell, M.J.D.1
  • 9
    • 0014661630 scopus 로고
    • Method for location of clusters of patterns to initialise a learning machine
    • Batchelor BG, Wilkins BR (1969) Method for location of clusters of patterns to initialise a learning machine. Elect Lett 5:481-483
    • (1969) Elect Lett , vol.5 , pp. 481-483
    • Batchelor, B.G.1    Wilkins, B.R.2
  • 10
    • 0020068152 scopus 로고
    • Self-organised formation of topologically correct feature maps
    • Kohonen T (1982) Self-organised formation of topologically correct feature maps. Biol Cybern 43:59-69
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 18
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • Reed R (1993) Pruning algorithms - a survey. IEEE Trans Neur Netw 4:740-746
    • (1993) IEEE Trans Neur Netw , vol.4 , pp. 740-746
    • Reed, R.1
  • 19
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok TY, Yeung Y (1997) Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans Neur Netw 8(3):630-645
    • (1997) IEEE Trans Neur Netw , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.Y.1    Yeung, Y.2
  • 20
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Touretzky DS (ed), Morgan Kaufmann, Los Altos, CA
    • Fahlman SE, Lebiere C (1990) The cascade-correlation learning architecture. In: Touretzky DS (ed) Advances in neural information processing systems, vol 2, Morgan Kaufmann, Los Altos, CA
    • (1990) Advances in Neural Information Processing Systems , vol.2
    • Fahlman, S.E.1    Lebiere, C.2
  • 22
    • 0025669403 scopus 로고
    • Practical identification of narmax models using radial basis functions
    • Chen S, Billings SA, Cowan CFN, Grant PW (1990) Practical identification of narmax models using radial basis functions. Int J Contr 52(6):1327-1350
    • (1990) Int J Contr , vol.52 , Issue.6 , pp. 1327-1350
    • Chen, S.1    Billings, S.A.2    Cowan, C.F.N.3    Grant, P.W.4
  • 23
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Petrov BN, Csaki F (eds), Tsahkadsov, Armenia
    • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsov, Armenia
    • (1973) Proceedings of the 2nd International Symposium on Information Theory
    • Akaike, H.1
  • 24
    • 0026373082 scopus 로고
    • Local training for radial basis function networks: Towards solving the hidden unit problem
    • Boston, MA, June 1991
    • Holcomb T, Morari M (1991) Local training for radial basis function networks: towards solving the hidden unit problem. In: Proceedings of the American Control Conference, Boston, MA, June 1991
    • (1991) Proceedings of the American Control Conference
    • Holcomb, T.1    Morari, M.2
  • 25
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organising learning
    • Lee S, Kil RM (1991) A Gaussian potential function network with hierarchically self-organising learning. Neur Netw 4:207-224
    • (1991) Neur Netw , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 28
    • 26444479778 scopus 로고
    • Optimisation by simulated annealing
    • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimisation by simulated annealing. Science 220(4598):671-680
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 30
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • Yao X (1993) A review of evolutionary artificial neural networks. Int J Intellig Sys 8(4):539-567
    • (1993) Int J Intellig Sys , vol.8 , Issue.4 , pp. 539-567
    • Yao, X.1
  • 31
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423-1447
    • (1999) Proc IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 32
    • 0004216572 scopus 로고
    • Evolutionary design of neural architecture - A preliminary taxonomy and guide to literature
    • AI Research Group, CS-TR 95-01
    • Balakrishnan K, Honavar V (1995) Evolutionary design of neural architecture - a preliminary taxonomy and guide to literature. Technical report, AI Research Group, CS-TR 95-01
    • (1995) Technical Report
    • Balakrishnan, K.1    Honavar, V.2
  • 33
    • 0001214171 scopus 로고
    • Genetic algorithms and neural networks
    • Winter G, Periaux J, Galan M, Cuesta P (eds), Wiley, New York
    • Whitley D (1995) Genetic algorithms and neural networks. In: Winter G, Periaux J, Galan M, Cuesta P (eds) Genetic algorithms in engineering and computer science, Wiley, New York
    • (1995) Genetic Algorithms in Engineering and Computer Science
    • Whitley, D.1
  • 36
    • 84878598642 scopus 로고    scopus 로고
    • Selection of training data for neural networks by a genetic algorithm
    • Springer, Berlin Heidelberg New York
    • Reeves CR, Taylor SJ (1998) Selection of training data for neural networks by a genetic algorithm. Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York
    • (1998) Lecture Notes in Computer Science
    • Reeves, C.R.1    Taylor, S.J.2
  • 37
    • 84884177055 scopus 로고
    • Genetic algorithms and permutation problems: A comparison of recombination operators for neural net structure specification
    • Schaffer JD, Whitley D. and Eschleman LJ (eds), IEEE Computer Society Press, Los Alamitos, CA
    • Hancock PJB (1992) Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification. In: Schaffer JD, Whitley D. and Eschleman LJ (eds) Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, (COGANN-92), IEEE Computer Society Press, Los Alamitos, CA
    • (1992) Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, (COGANN-92)
    • Hancock, P.J.B.1
  • 38
    • 0028208116 scopus 로고
    • Evolving space-filling curves to distribute radial basis functions over an input space
    • Whitehead BA, Choate DC (1994) Evolving space-filling curves to distribute radial basis functions over an input space. IEEE Trans Neur Netw 5(1); 15-23
    • (1994) IEEE Trans Neur Netw , vol.5 , Issue.1 , pp. 15-23
    • Whitehead, B.A.1    Choate, D.C.2
  • 39
    • 0000332101 scopus 로고
    • Real coded genetic algorithms, virtual alphabets and blocking
    • Goldberg DE (1991) Real coded genetic algorithms, virtual alphabets and blocking. Compl Sys 5:139-167
    • (1991) Compl Sys , vol.5 , pp. 139-167
    • Goldberg, D.E.1
  • 40
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287-289
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 41
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centres and widths for time series prediction
    • Whitehead BA, Choate DC (1996) Cooperative-competitive genetic evolution of radial basis function centres and widths for time series prediction. IEEE Trans Neur Netw 7:869-880
    • (1996) IEEE Trans Neur Netw , vol.7 , pp. 869-880
    • Whitehead, B.A.1    Choate, D.C.2
  • 43
    • 0000156268 scopus 로고    scopus 로고
    • Genetic evolution of radial basis function coverage using orthogonal niches
    • Whitehead BA (1996) Genetic evolution of radial basis function coverage using orthogonal niches. IEEE Trans Neur Netw 7(6): 1525-1528
    • (1996) IEEE Trans Neur Netw , vol.7 , Issue.6 , pp. 1525-1528
    • Whitehead, B.A.1
  • 44
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • Billings SA, Zheng GL (1995) Radial basis function network configuration using genetic algorithms. Neur Netw 8(6):877-890
    • (1995) Neur Netw , vol.8 , Issue.6 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 45
    • 73349102893 scopus 로고
    • Towards solving subset selection problems with the aid of the genetic algorithm
    • Manner R, Manderick B (eds), Elsevier, Amsterdam
    • Lucasius CB, Kateman G (1992) Towards solving subset selection problems with the aid of the genetic algorithm. In: Manner R, Manderick B (eds) Parallel problem solving from nature, vol 2, Elsevier, Amsterdam
    • (1992) Parallel Problem Solving from Nature , vol.2
    • Lucasius, C.B.1    Kateman, G.2
  • 46
    • 0001867927 scopus 로고
    • Functional equivalence and genetic learning of RBF networks
    • Pearson DW, Steele NC, Albrecht RF (eds), Springer, Berlin Heidelberg New York
    • Neruda R (1995) Functional equivalence and genetic learning of RBF networks. In: Pearson DW, Steele NC, Albrecht RF (eds) Artificial neural networks and genetic algorithms, Springer, Berlin Heidelberg New York
    • (1995) Artificial Neural Networks and Genetic Algorithms
    • Neruda, R.1
  • 47
    • 0004485678 scopus 로고
    • On the algebraic structure of feed-forward network weight spaces
    • Elsevier, Amsterdam
    • Hecht-Nielsen R (1990) On the algebraic structure of feed-forward network weight spaces. In: Advanced neural computers, Elsevier, Amsterdam
    • (1990) Advanced Neural Computers
    • Hecht-Nielsen, R.1
  • 49
    • 0001268158 scopus 로고    scopus 로고
    • Evolving fuzzy rule based controllers using genetic algorithms
    • Carse B, Fogarty TC, Munro A (1996) Evolving fuzzy rule based controllers using genetic algorithms. Int J Fuzz Set Sys 80(3):273-293
    • (1996) Int J Fuzz Set Sys , vol.80 , Issue.3 , pp. 273-293
    • Carse, B.1    Fogarty, T.C.2    Munro, A.3
  • 50
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Jang JR, Sun T (1993) Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans Neur Netw 4:156-159
    • (1993) IEEE Trans Neur Netw , vol.4 , pp. 156-159
    • Jang, J.R.1    Sun, T.2
  • 51
    • 33845540840 scopus 로고    scopus 로고
    • Tackling the "curse of dimensionality" of radial basis function networks using a genetic algorithm
    • Springer, Berlin Heidelberg New York
    • Carse B, Fogarty TC (1996) Tackling the "curse of dimensionality" of radial basis function networks using a genetic algorithm. Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York
    • (1996) Lecture Notes in Computer Science
    • Carse, B.1    Fogarty, T.C.2
  • 52
    • 84958176926 scopus 로고    scopus 로고
    • Fast evolutionary learning of minimal radial basis function neural networks using a genetic algorithm
    • Springer, Berlin Heidelberg New York
    • Carse B, Fogarty TC (1996) Fast evolutionary learning of minimal radial basis function neural networks using a genetic algorithm. Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York
    • (1996) Lecture Notes in Computer Science
    • Carse, B.1    Fogarty, T.C.2
  • 55
    • 0031588791 scopus 로고    scopus 로고
    • Initializing of an RBF network by a genetic algorithm
    • Kuncheva LI (1997) Initializing of an RBF network by a genetic algorithm. Neurocomput 14(3):273-288
    • (1997) Neurocomput , vol.14 , Issue.3 , pp. 273-288
    • Kuncheva, L.I.1
  • 56
    • 0001844324 scopus 로고
    • An overview of genetic algorithms: Part 1, fundamentals
    • Beasley D, Bull DR, Martin RR (1993) An overview of genetic algorithms: Part 1, fundamentals. Univer Comput 15:59-69
    • (1993) Univer Comput , vol.15 , pp. 59-69
    • Beasley, D.1    Bull, D.R.2    Martin, R.R.3
  • 57
    • 0001844324 scopus 로고
    • An overview of genetic algorithms: Part 2, research topics
    • Beasley D, Bull DR, Martin RR (1993) An overview of genetic algorithms: Part 2, research topics. Univer Comput 15:170-181
    • (1993) Univer Comput , vol.15 , pp. 170-181
    • Beasley, D.1    Bull, D.R.2    Martin, R.R.3
  • 60
    • 0347090991 scopus 로고    scopus 로고
    • Dynamics modelling of fluid power systems applying a global error descent algorithm to a self-organising radial basis function network
    • Xue Y, Watton J (1998) Dynamics modelling of fluid power systems applying a global error descent algorithm to a self-organising radial basis function network. Mechatronics 8(7): 727-745
    • (1998) Mechatronics , vol.8 , Issue.7 , pp. 727-745
    • Xue, Y.1    Watton, J.2
  • 61
    • 0343603384 scopus 로고    scopus 로고
    • Model selection using a simplex reproduction genetic algorithm
    • Vesin JM, Gruter R (1999) Model selection using a simplex reproduction genetic algorithm. Sig Process (78):321-327
    • (1999) Sig Process , Issue.78 , pp. 321-327
    • Vesin, J.M.1    Gruter, R.2
  • 63
    • 0003566072 scopus 로고
    • Oxford University Press, Oxford, UK
    • Tong H (1990) Non-linear time series, Oxford University Press, Oxford, UK
    • (1990) Non-linear Time Series
    • Tong, H.1
  • 64
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S, Cowan CFN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neur Netw 2(2):302-309
    • (1991) IEEE Trans Neur Netw , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 65
    • 6344254665 scopus 로고    scopus 로고
    • Combined genetic algorithms and neural network approach for power-system transient stability evaluation
    • Moecntar M, Farag AS, Hu L, Cheng TC (1999) Combined genetic algorithms and neural network approach for power-system transient stability evaluation. Europ Trans Elect Power 9(2):115-122
    • (1999) Europ Trans Elect Power , vol.9 , Issue.2 , pp. 115-122
    • Moecntar, M.1    Farag, A.S.2    Hu, L.3    Cheng, T.C.4
  • 67
    • 0346525901 scopus 로고    scopus 로고
    • Design of a soft computing hybrid model classifier for data mining applications
    • Sumathi S, Sivanandam SN, Ravindran R (2001) Design of a soft computing hybrid model classifier for data mining applications. Engin Intell Sys Electr Engin Comm 9(l):33-56
    • (2001) Engin Intell Sys Electr Engin Comm , vol.9 , Issue.1 , pp. 33-56
    • Sumathi, S.1    Sivanandam, S.N.2    Ravindran, R.3
  • 68
    • 0036254949 scopus 로고    scopus 로고
    • Detection of small objects in clutter using a GA-RBF neural network
    • Leung H, Dubash N. Xie N (2002) Detection of small objects in clutter using a GA-RBF neural network. IEEE Trans Aero Electr Sys 38(1): 98-118
    • (2002) IEEE Trans Aero Electr Sys , vol.38 , Issue.1 , pp. 98-118
    • Leung, H.1    Dubash, N.2    Xie, N.3
  • 69
    • 0027632108 scopus 로고
    • Chaotic radar signal processing over the sea
    • Leung H, Lo T (1993) Chaotic radar signal processing over the sea. IEEE J Ocean Eng 18:287-295
    • (1993) IEEE J Ocean Eng , vol.18 , pp. 287-295
    • Leung, H.1    Lo, T.2
  • 70
    • 0035307307 scopus 로고    scopus 로고
    • Time-series forecasting using GA-tuned radial basis functions
    • Sheta AF, De Jong K (2001) Time-series forecasting using GA-tuned radial basis functions. Info Sci 133(3-4):221-228
    • (2001) Info Sci , vol.133 , Issue.3-4 , pp. 221-228
    • Sheta, A.F.1    De Jong, K.2
  • 71
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • Chen S, Wu Y, Luk BL (1999) Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Trans Neur Netw 10(5):1239-1243
    • (1999) IEEE Trans Neur Netw , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 73
    • 0037226313 scopus 로고    scopus 로고
    • Design of structural modular neural networks with genetic algorithm
    • Jiang N, Zhao ZY, Ren LQ (2003) Design of structural modular neural networks with genetic algorithm. Adv Eng Soft (1):17-24
    • (2003) Adv Eng Soft , Issue.1 , pp. 17-24
    • Jiang, N.1    Zhao, Z.Y.2    Ren, L.Q.3
  • 74
    • 0029710033 scopus 로고    scopus 로고
    • Evolutionary design of artificial neural networks with different nodes, evolutionary computation
    • Liu Y, Yao X (1996) Evolutionary design of artificial neural networks with different nodes, evolutionary computation. Proc IEEE Int Conf 1996, 670-675
    • (1996) Proc IEEE Int Conf 1996 , pp. 670-675
    • Liu, Y.1    Yao, X.2
  • 75
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: Implementation and theory
    • Watson, GA (ed), Springer, Berlin Heidelberg New York
    • Mor JJ (1977) The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, GA (ed) Numerical analysis, Lecture Notes in Mathematics, Springer, Berlin Heidelberg New York
    • (1977) Numerical Analysis, Lecture Notes in Mathematics
    • Mor, J.J.1
  • 76
    • 0032097518 scopus 로고    scopus 로고
    • Evolving Gaussian RBF network for nonlinear time series modelling and prediction
    • Aiguo S, Jiren L (1998) Evolving Gaussian RBF network for nonlinear time series modelling and prediction. Electr Lett 34(12):1241-1243
    • (1998) Electr Lett , vol.34 , Issue.12 , pp. 1241-1243
    • Aiguo, S.1    Jiren, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.