-
1
-
-
2242466770
-
Functional-coefficient regression models for nonlinear time series
-
Z. Cai, J. Fan, and Q. Yao Functional-coefficient regression models for nonlinear time series Journal of the American Statistical Association 95 451 2000 941 956
-
(2000)
Journal of the American Statistical Association
, vol.95
, Issue.451
, pp. 941-956
-
-
Cai, Z.1
Fan, J.2
Yao, Q.3
-
2
-
-
0040481728
-
Functional coefficient autoregressive models: estimation and tests of hypotheses
-
R. Chen, and L.-M. Liu Functional coefficient autoregressive models: estimation and tests of hypotheses Journal of Time Series Analysis 22 2 2001 151 173 (Pubitemid 33595905)
-
(2001)
Journal of Time Series Analysis
, vol.22
, Issue.2
, pp. 151-173
-
-
Chen, R.1
Liu, L.-M.2
-
3
-
-
10444247376
-
Functional coefficient regression models for non-linear time series: A polynomial spline approach
-
J.Z. Huang, and H. Shen Functional coefficient regression models for nonlinear time series: a polynomial spline approach Scandinavian Journal of Statistics 31 2004 515 534 (Pubitemid 39636946)
-
(2004)
Scandinavian Journal of Statistics
, vol.31
, Issue.4
, pp. 515-534
-
-
Huang, J.Z.1
Shen, H.2
-
4
-
-
33646945927
-
Functional coefficient autoregressive models for vector time series
-
DOI 10.1016/j.csda.2005.07.016, PII S0167947305001635
-
J.L. Harvill, and B.K. Ray Functional coefficient autoregressive models for vector time series Computational Statistics & Data Analysis 50 2006 3547 3566 (Pubitemid 43794953)
-
(2006)
Computational Statistics and Data Analysis
, vol.50
, Issue.12
, pp. 3547-3566
-
-
Harvill, J.L.1
Ray, B.K.2
-
5
-
-
33745998037
-
State-dependent parameter modelling and identification of stochastic non-linear sampled-data systems
-
DOI 10.1016/j.jprocont.2006.02.002, PII S0959152406000230
-
B.M. Akesson, and H.T. Toivonen State-dependent parameter modelling and identification of stochastic non-linear sampled-data systems Journal of Process Control 16 2006 877 886 (Pubitemid 44067445)
-
(2006)
Journal of Process Control
, vol.16
, Issue.8
, pp. 877-886
-
-
Akesson, B.M.1
Toivonen, H.T.2
-
6
-
-
56949088967
-
Proportional functional coefficient time series models
-
R. Zhang Proportional functional coefficient time series models Journal of Statistical Planning and Inference 139 2009 749 763
-
(2009)
Journal of Statistical Planning and Inference
, vol.139
, pp. 749-763
-
-
Zhang, R.1
-
7
-
-
59349089800
-
Functional-coefficient models for nonstationary time series data
-
Z. Cai, Q. Li, and J.Y. Park Functional-coefficient models for nonstationary time series data Journal of Econometrics 148 2009 101 113
-
(2009)
Journal of Econometrics
, vol.148
, pp. 101-113
-
-
Cai, Z.1
Li, Q.2
Park, J.Y.3
-
9
-
-
84986817195
-
State-dependent models: A general approach to non-linear time series analysis
-
M.B. Priestley State-dependent models: a general approach to non-linear time series analysis Journal of Time Series Analysis 1 1 1980 57 71
-
(1980)
Journal of Time Series Analysis
, vol.1
, Issue.1
, pp. 57-71
-
-
Priestley, M.B.1
-
12
-
-
0002547378
-
Non-linear time series models for non-linear random vibrations
-
T. Ozaki Non-linear time series models for non-linear random vibrations Journal of Applied Probability 17 1980 84 93
-
(1980)
Journal of Applied Probability
, vol.17
, pp. 84-93
-
-
Ozaki, T.1
-
13
-
-
77956887690
-
Modeling nonlinear random vibrations using an amplitude-dependent autoregressive time series model
-
V. Haggan, and T. Ozaki Modeling nonlinear random vibrations using an amplitude-dependent autoregressive time series model Biometrika 68 1981 189 196
-
(1981)
Biometrika
, vol.68
, pp. 189-196
-
-
Haggan, V.1
Ozaki, T.2
-
15
-
-
33846813334
-
Hybrid neural network models for hydrologic time series forecasting
-
DOI 10.1016/j.asoc.2006.03.002, PII S1568494606000317
-
A. Jain, and A.M. Kumar Hybrid neural network models for hydrologic time series forecasting Applied Soft Computing 7 2 2007 585 592 (Pubitemid 46205467)
-
(2007)
Applied Soft Computing Journal
, vol.7
, Issue.2
, pp. 585-592
-
-
Jain, A.1
Kumar, A.M.2
-
16
-
-
58349093296
-
Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques
-
C. Lee, Y. Chiang, C. Shih, and C. Tsai Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques Expert Systems with Applications 36 3 2009 4717 4724
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.3
, pp. 4717-4724
-
-
Lee, C.1
Chiang, Y.2
Shih, C.3
Tsai, C.4
-
17
-
-
35248838920
-
Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization
-
DOI 10.1016/j.chaos.2006.05.077, PII S0960077906005443
-
F.A. Guerra, and L. dos S. Coelho Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization Chaos, Solitons & Fractals 35 5 2008 967 979 (Pubitemid 47562758)
-
(2008)
Chaos, Solitons and Fractals
, vol.35
, Issue.5
, pp. 967-979
-
-
Guerra, F.A.1
Coelho, L.D.S.2
-
18
-
-
62749130751
-
Identification of temperature and moisture content fields using a combined neural network and clustering method approach
-
L. dos S. Coelho, R.Z. Freire, G.H. dos Santos, and N. Mendes Identification of temperature and moisture content fields using a combined neural network and clustering method approach International Communications in Heat and Mass Transfer 36 4 2009 304 313
-
(2009)
International Communications in Heat and Mass Transfer
, vol.36
, Issue.4
, pp. 304-313
-
-
Dos Coelho S, L.1
Freire, R.Z.2
Dos Santos, G.H.3
Mendes, N.4
-
19
-
-
70449528756
-
Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
-
C. Lee, and C. Ko Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm Neurocomputing 73 1-3 2009 449 460
-
(2009)
Neurocomputing
, vol.73
, Issue.13
, pp. 449-460
-
-
Lee, C.1
Ko, C.2
-
21
-
-
77956393917
-
A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling
-
M. Gan, H. Peng, and X. Peng A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling Information Sciences 180 22 2010 4370 4383
-
(2010)
Information Sciences
, vol.180
, Issue.22
, pp. 4370-4383
-
-
Gan, M.1
Peng, H.2
Peng, X.3
-
22
-
-
58149472216
-
Design of experiments on neural network's training for nonlinear time series forecasting
-
P.P. Balestrassi, E. Popova, A.P. Paiva, and J.W. Marangon Lima Design of experiments on neural network's training for nonlinear time series forecasting Neurocomputing 72 4-6 2009 1160 1178
-
(2009)
Neurocomputing
, vol.72
, Issue.46
, pp. 1160-1178
-
-
Balestrassi, P.P.1
Popova, E.2
Paiva, A.P.3
Marangon Lima, J.W.4
-
24
-
-
0033153934
-
Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model
-
Z. Shi, Y. Tamura, and T. Ozaki Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model International Journal of System Science 30 1999 717 727
-
(1999)
International Journal of System Science
, vol.30
, pp. 717-727
-
-
Shi, Z.1
Tamura, Y.2
Ozaki, T.3
-
25
-
-
34047207250
-
The innovation approach to the identification of nonlinear causal models in time series analysis
-
D.R. Brillinger, E.A. Robinson, F.P. Schoenberg, Springer New York pp. 195-226
-
T. Ozaki, J.C. Jimenez, H. Peng, and V.H. Ozaki The innovation approach to the identification of nonlinear causal models in time series analysis D.R. Brillinger, E.A. Robinson, F.P. Schoenberg, Time Series Analysis and Applications to Geophysical Systems 2004 Springer New York pp. 195-226
-
(2004)
Time Series Analysis and Applications to Geophysical Systems
-
-
Ozaki, T.1
Jimenez, J.C.2
Peng, H.3
Ozaki, V.H.4
-
27
-
-
0347270155
-
x decomposition process
-
DOI 10.1016/S0967-0661(03)00050-9
-
x decomposition process Control Engineering Practice 12 2004 191 203 (Pubitemid 38098435)
-
(2004)
Control Engineering Practice
, vol.12
, Issue.2
, pp. 191-203
-
-
Peng, H.1
Ozaki, T.2
Toyoda, Y.3
Shioya, H.4
Nakano, K.5
Haggan-Ozaki, V.6
Mori, M.7
-
28
-
-
33750605238
-
Nonlinear system modeling and robust predictive control based on RBF-ARX model
-
DOI 10.1016/j.engappai.2006.05.012, PII S0952197606001059
-
H. Peng, Z.J. Yang, W. Gui, and M. Wu Nonlinear system modeling and robust predictive control based on RBF-ARX model Engineering Applications of Artificial Intelligence 20 2007 1 9 (Pubitemid 44692468)
-
(2007)
Engineering Applications of Artificial Intelligence
, vol.20
, Issue.1
, pp. 1-9
-
-
Peng, H.1
Yang, Z.J.2
Gui, W.3
Wu, M.4
Shioya, H.5
Nakano, K.6
-
29
-
-
33846116564
-
Nonlinear predictive control using neural nets-based local linearization ARX model - Stability and industrial application
-
DOI 10.1109/TCST.2006.883339
-
H. Peng, K. Nakano, and H. Shioya Nonlinear predictive control using neural nets-based local linearization ARX Model - stability and industrial application IEEE Transactions on Control Systems Technology 15 1 2007 130 143 (Pubitemid 46061030)
-
(2007)
IEEE Transactions on Control Systems Technology
, vol.15
, Issue.1
, pp. 130-143
-
-
Peng, H.1
Nakano, K.2
Shioya, H.3
-
30
-
-
53649087251
-
Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model
-
H. Peng, J. Wu, G. Inoussa, Q. Deng, and K. Nakano Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model Control Engineering Practice 17 2009 59 66
-
(2009)
Control Engineering Practice
, vol.17
, pp. 59-66
-
-
Peng, H.1
Wu, J.2
Inoussa, G.3
Deng, Q.4
Nakano, K.5
-
31
-
-
58249087027
-
An Akaike state-space controller for RBF-ARX models, IEEE Trans
-
V. Haggan-Ozaki, T. Ozaki, and Y. Toyoda An Akaike state-space controller for RBF-ARX models, IEEE Trans Control Systems Technology 17 1 2009 191 198
-
(2009)
Control Systems Technology
, vol.17
, Issue.1
, pp. 191-198
-
-
Haggan-Ozaki, V.1
Ozaki, T.2
Toyoda, Y.3
-
32
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
DOI 10.1016/S0925-2312(01)00702-0, PII S0925231201007020
-
G.P. Zhang Time series forecasting using a hybrid ARIMA and neural network model Neurocomputing 50 2003 159 175 (Pubitemid 36124139)
-
(2003)
Neurocomputing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
-
33
-
-
15544371595
-
Forecasting nonlinear time series with feedforward neural networks: A case study of Canadian lynx data
-
Y. Katijani, W.K. Hipel, and A.L. Mcleod Forecasting nonlinear time series with feedforward neural networks: a case study of Canadian lynx data Journal of Forecasting 24 2005 105 117
-
(2005)
Journal of Forecasting
, vol.24
, pp. 105-117
-
-
Katijani, Y.1
Hipel, W.K.2
McLeod, A.L.3
-
35
-
-
21444457053
-
The geometrical ergodicity of nonlinear autoregressive models
-
H.Z. An, and F.C. Huang The geometrical ergodicity of nonlinear autoregressive models Statistica Sinica 6 1996 943 956
-
(1996)
Statistica Sinica
, vol.6
, pp. 943-956
-
-
An, H.Z.1
Huang, F.C.2
-
36
-
-
0000773483
-
On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations
-
K.S. Chan, and H. Tong On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations Advances in Applied Probability 17 1985 666 678
-
(1985)
Advances in Applied Probability
, vol.17
, pp. 666-678
-
-
Chan, K.S.1
Tong, H.2
-
37
-
-
0000357475
-
Criteria for classifying general Markov chains
-
R.L. Tweedie Criteria for classifying general Markov chains Advances in Applied Probability 8 1975 737 771
-
(1975)
Advances in Applied Probability
, vol.8
, pp. 737-771
-
-
Tweedie, R.L.1
-
38
-
-
0001590528
-
Non-linear time series and Markov chains
-
D. Tjøstheim Non-linear time series and Markov chains Advances in Applied Probability 22 1990 587 611
-
(1990)
Advances in Applied Probability
, vol.22
, pp. 587-611
-
-
Tjøstheim, D.1
-
41
-
-
21844518145
-
A model selection approach to assessing the information in the term structure using linear models and artificial neural networks
-
N.R. Swanson, and H. White A model selection approach to assessing the information in the term structure using linear models and artificial neural networks Journal of Business and Economic Statistics 13 3 1995 265 275
-
(1995)
Journal of Business and Economic Statistics
, vol.13
, Issue.3
, pp. 265-275
-
-
Swanson, N.R.1
White, H.2
|