메뉴 건너뛰기




Volumn 3, Issue 4, 2010, Pages 593-610

Hybrid optimization of information granulation-based fuzzy radial basis function neural networks

Author keywords

Fuzzy logic; Neural nets; Polynomials; Programming and algorithm theory

Indexed keywords

DESIGN/METHODOLOGY/APPROACH; FUZZIFICATIONS; FUZZY C MEANS CLUSTERING; FUZZY MODELS; FUZZY RADIAL BASIS FUNCTION NEURAL NETWORKS; GLOBAL ERRORS; HIERARCHICAL FAIR COMPETITIONS; HIGH ORDER POLYNOMIAL; HYBRID OPTIMIZATION; HYBRID OPTIMIZATION ALGORITHM; INFORMATION GRANULATION; INPUT VARIABLES; INPUT-OUTPUT RELATIONS; LOCAL ERROR; NEURAL NET; NONLINEAR FUNCTION APPROXIMATION; OPTIMIZATION METHOD; OPTIMIZATION METHODOLOGY; PARALLEL GENETIC ALGORITHMS; PARAMETRIC OPTIMIZATION; PERFORMANCE INDICES; POLYNOMIAL COEFFICIENTS; PROGRAMMING AND ALGORITHM THEORY; SELECTION ALGORITHM; SPECIFIC SUBSET; SUB-SPACES; TIME-SERIES DATA; WEIGHTED LEAST SQUARES;

EID: 78649789083     PISSN: 1756378X     EISSN: 17563798     Source Type: Journal    
DOI: 10.1108/17563781011094188     Document Type: Article
Times cited : (5)

References (25)
  • 2
    • 0033280731 scopus 로고    scopus 로고
    • A highly interpretable form of Sugeno inference systems
    • Bikdash, M. (1999), "A highly interpretable form of Sugeno inference systems" in IEEE Trans. Fuzzy Systems, Vol. 7, No. 6, pp. 686-96.
    • (1999) IEEE Trans. Fuzzy Systems , vol.7 , Issue.6 , pp. 686-696
    • Bikdash, M.1
  • 4
    • 34250856811 scopus 로고    scopus 로고
    • Automatic design of hierarchical Takagi - Sugeno type fuzzy systems using evolutionary algorithms
    • Chen, Y., Yang, B. and Abraham, A. (2007), "Automatic design of hierarchical Takagi - Sugeno type fuzzy systems using evolutionary algorithms" in IEEE Trans. Fuzzy Systems, Vol. 15, No. 3, pp. 385-97.
    • (2007) IEEE Trans. Fuzzy Systems , vol.15 , Issue.3 , pp. 385-397
    • Chen, Y.1    Yang, B.2    Abraham, A.3
  • 5
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S.L. (1994), "Fuzzy model identification based on cluster estimation" in Journal of Intelligent and Fuzzy Systems, Vol. 2, No. 3, pp. 267-78.
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.L.1
  • 6
    • 69849111329 scopus 로고    scopus 로고
    • Fuzzy radial basis function neural networks with information granulation and its genetic optimization
    • Lecture Notes in Computer Science, Springer, Berlin
    • Choi, J.N., Lee, Y.I. and Oh, S.K. (2009), "Fuzzy radial basis function neural networks with information granulation and its genetic optimization" in Vol. 5552, Springer, Berlin, pp. 127-34, Lecture Notes in Computer Science.
    • (2009) , vol.5552 , pp. 127-134
    • Choi, J.N.1    Lee, Y.I.2    Oh, S.K.3
  • 7
    • 50149097761 scopus 로고    scopus 로고
    • Identification of fuzzy models using a successive tuning method with a variant identification ratio
    • Choi, J.N., Oh, S.K. and Pedrycz, W. (2008a), "Identification of fuzzy models using a successive tuning method with a variant identification ratio" in Fuzzy Sets Syst., Vol. 159, pp. 2873-89.
    • (2008) Fuzzy Sets Syst. , vol.159 , pp. 2873-2889
    • Choi, J.N.1    Oh, S.K.2    Pedrycz, W.3
  • 8
    • 55649119349 scopus 로고    scopus 로고
    • Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation
    • Choi, J.N., Oh, S.K. and Pedrycz, W. (2008b), "Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation" in International Journal of Approx. Reasoning, Vol. 49, No. 3, pp. 631-48.
    • (2008) International Journal of Approx. Reasoning , vol.49 , Issue.3 , pp. 631-648
    • Choi, J.N.1    Oh, S.K.2    Pedrycz, W.3
  • 9
    • 33748759256 scopus 로고    scopus 로고
    • A new two-phase approach to fuzzy modeling for nonlinear function approximation
    • Chung, W.Y. and Kim, E.T. (2006), "A new two-phase approach to fuzzy modeling for nonlinear function approximation" in IEICE Trans. Inform. Syst., Vol. E89-D, No. 9, pp. 2473-83.
    • (2006) IEICE Trans. Inform. Syst. , vol.E89-D , Issue.9 , pp. 2473-2483
    • Chung, W.Y.1    Kim, E.T.2
  • 10
    • 0037522133 scopus 로고    scopus 로고
    • Multilevel fuzzy relational systems: Structure and identification
    • Duan, J.C. and Chung, F.L. (2002), "Multilevel fuzzy relational systems: structure and identification" in Soft Comput., Vol. 6, pp. 71-86.
    • (2002) Soft Comput. , vol.6 , pp. 71-86
    • Duan, J.C.1    Chung, F.L.2
  • 11
    • 18844362190 scopus 로고    scopus 로고
    • TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy
    • Herrera, L.J., Pomares, H., Rojas, I., Valenzuela, O. and Prieto, A. (2005), "TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy" in Fuzzy Sets Syst., Vol. 153, pp. 403-27.
    • (2005) Fuzzy Sets Syst. , vol.153 , pp. 403-427
    • Herrera, L.J.1    Pomares, H.2    Rojas, I.3    Valenzuela, O.4    Prieto, A.5
  • 14
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J.S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system" in IEEE Trans. System, Man, and Cybern., Vol. 23, No. 3, pp. 665-85.
    • (1993) IEEE Trans. System, Man, and Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 15
    • 0032301756 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a fuzzy neural network
    • Maguire, L.P., Roche, B., Mcginnity, T.M. and Mcdaid, L.J. (1998), "Predicting a chaotic time series using a fuzzy neural network" in Inform. Sci., Vol. 112, pp. 125-36.
    • (1998) Inform. Sci. , vol.112 , pp. 125-136
    • Maguire, L.P.1    Roche, B.2    McGinnity, T.M.3    McDaid, L.J.4
  • 16
    • 0035568382 scopus 로고    scopus 로고
    • FRBF: A fuzzy radial basis function network
    • Mitra, S. and Basak, J. (2001), "FRBF: a fuzzy radial basis function network" in Neural Comput. Applic., Vol. 10, pp. 244-52.
    • (2001) Neural Comput. Applic. , vol.10 , pp. 244-252
    • Mitra, S.1    Basak, J.2
  • 17
    • 33745886489 scopus 로고    scopus 로고
    • Design of fuzzy polynomial neural networks with the aid of genetic fuzzy granulation and its application to multi-variable process system
    • Lecture Notes in Computer Science, Springer, Berlin
    • Oh, S.K., Lee, I.T. and Choi, J.N. (2006), "Design of fuzzy polynomial neural networks with the aid of genetic fuzzy granulation and its application to multi-variable process system" in Vol. 3971, Springer, Berlin, pp. 774-9, Lecture Notes in Computer Science.
    • (2006) , vol.3971 , pp. 774-779
    • Oh, S.K.1    Lee, I.T.2    Choi, J.N.3
  • 18
    • 78649790088 scopus 로고    scopus 로고
    • An adaptive hierarchical fair competition genetic algorithm for large-scale numerical optimization
    • paper presented at the SBRN 2004 - Brazilian Symposium on Neural Networks, São Luis
    • Oliveira, A., Lorena, L., Preto, A. and Stephany, S. (2004), "An adaptive hierarchical fair competition genetic algorithm for large-scale numerical optimization", paper presented at the SBRN 2004 - Brazilian Symposium on Neural Networks, São Luis.
    • (2004)
    • Oliveira, A.1    Lorena, L.2    Preto, A.3    Stephany, S.4
  • 19
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational system
    • Pedryca, W. (1984), "An identification algorithm in fuzzy relational system" in Fuzzy Sets Syst., Vol. 13, pp. 153-67.
    • (1984) Fuzzy Sets Syst. , vol.13 , pp. 153-167
    • Pedryca, W.1
  • 20
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control" in IEEE Trans. System, Man, and Cybern., Vol. 15, No. 1, pp. 116-32.
    • (1985) IEEE Trans. System, Man, and Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 21
    • 84972812688 scopus 로고
    • Synthesis of fuzzy models for industrial processes
    • Tong, R.M. (1978), "Synthesis of fuzzy models for industrial processes" in Int. J. Gen. Syst., Vol. 4, pp. 143-62.
    • (1978) Int. J. Gen. Syst. , vol.4 , pp. 143-162
    • Tong, R.M.1
  • 22
    • 14644443622 scopus 로고    scopus 로고
    • On the use of the weighted fuzzy c-means in fuzzy modeling
    • Tsekouras, G.E. (2005), "On the use of the weighted fuzzy c-means in fuzzy modeling" in Advances in Engineering Software, Vol. 36, pp. 287-300.
    • (2005) Advances in Engineering Software , vol.36 , pp. 287-300
    • Tsekouras, G.E.1
  • 24
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • Yen, J., Wang, L. and Cillespie, C.W. (1998), "Improving the interpretability of TSK fuzzy models by combining global learning and local learning" in IEEE Trans. Fuzzy Systems, Vol. 6, No. 4, pp. 530-7.
    • (1998) IEEE Trans. Fuzzy Systems , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Cillespie, C.W.3
  • 25
    • 0037120676 scopus 로고    scopus 로고
    • A GA-based fuzzy modeling approach for generating TSK models
    • Papadakis, S.E. and Theocharis, J.B. (2002), "A GA-based fuzzy modeling approach for generating TSK models" in Fuzzy Sets. Syst., Vol. 131, pp. 121-52.
    • (2002) Fuzzy Sets. Syst. , vol.131 , pp. 121-152
    • Papadakis, S.E.1    Theocharis, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.