메뉴 건너뛰기




Volumn 33, Issue 6, 2009, Pages 2791-2807

Identification of fuzzy relation models using hierarchical fair competition-based parallel genetic algorithms and information granulation

Author keywords

C Means; Fuzzy relation model; Genetic algorithms; Hierarchical fair competition (HFC); Information granulation; Multi population genetic optimization

Indexed keywords

COMPETITION; CURVE FITTING; ELECTRIC NETWORK PARAMETERS; FUZZY INFERENCE; GENETIC ALGORITHMS; GRANULATION; HIERARCHICAL SYSTEMS; HYBRID SYSTEMS; INFERENCE ENGINES; MEMBERSHIP FUNCTIONS; PARALLEL ALGORITHMS; PARAMETER ESTIMATION; POPULATION STATISTICS; STANDARDIZATION; STRUCTURAL OPTIMIZATION;

EID: 60649117130     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2008.08.022     Document Type: Article
Times cited : (16)

References (38)
  • 1
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational system
    • Pedrycz W. An identification algorithm in fuzzy relational system. Fuzzy Sets Syst. 13 (1984) 153-167
    • (1984) Fuzzy Sets Syst. , vol.13 , pp. 153-167
    • Pedrycz, W.1
  • 2
    • 0002310361 scopus 로고
    • On identification in fuzzy systems and its applications in control problems
    • Czogola E., and Pedrycz W. On identification in fuzzy systems and its applications in control problems. Fuzzy Sets Syst. 6 (1981) 73-83
    • (1981) Fuzzy Sets Syst. , vol.6 , pp. 73-83
    • Czogola, E.1    Pedrycz, W.2
  • 3
    • 0002907696 scopus 로고
    • The evaluation of fuzzy models derived from experimental data
    • Tong R.M. The evaluation of fuzzy models derived from experimental data. Fuzzy Sets Syst. 13 (1980) 1-12
    • (1980) Fuzzy Sets Syst. , vol.13 , pp. 1-12
    • Tong, R.M.1
  • 4
    • 0024702035 scopus 로고
    • Fuzzy system identification
    • Xu C.W. Fuzzy system identification. IEE Proc. 126 4 (1989) 146-150
    • (1989) IEE Proc. , vol.126 , Issue.4 , pp. 146-150
    • Xu, C.W.1
  • 5
    • 0023209327 scopus 로고
    • Fuzzy model identification self-learning for dynamic system
    • Xu C.W., and Zailu Y. Fuzzy model identification self-learning for dynamic system. IEEE Trans. Syst., Man, Cybernet. 17 4 (1987) 683-689
    • (1987) IEEE Trans. Syst., Man, Cybernet. , vol.17 , Issue.4 , pp. 683-689
    • Xu, C.W.1    Zailu, Y.2
  • 6
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybernet. 15 1 (1985) 116-132
    • (1985) IEEE Trans. Syst., Man, Cybernet. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 8
    • 0002126015 scopus 로고
    • Soft clustering algorithm and validity of solutions
    • Gupta M.M. (Ed), North Holland
    • Ismail M.A. Soft clustering algorithm and validity of solutions. In: Gupta M.M. (Ed). Fuzzy Computing Theory, Hardware and Applications (1988), North Holland 445-471
    • (1988) Fuzzy Computing Theory, Hardware and Applications , pp. 445-471
    • Ismail, M.A.1
  • 9
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • Oh S.K., and Pedrycz W. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Sets Syst. 115 2 (2000) 205-230
    • (2000) Fuzzy Sets Syst. , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.K.1    Pedrycz, W.2
  • 10
    • 33748759256 scopus 로고    scopus 로고
    • A new two-phase approach to fuzzy modeling for nonlinear function approximation
    • Chung W.Y., and Kim E.T. A new two-phase approach to fuzzy modeling for nonlinear function approximation. IEICE Trans. Info. Syst. E89-D 9 (2006) 2473-2483
    • (2006) IEICE Trans. Info. Syst. , vol.E89-D , Issue.9 , pp. 2473-2483
    • Chung, W.Y.1    Kim, E.T.2
  • 11
    • 4444301913 scopus 로고    scopus 로고
    • A new fuzzy modeling and identification based on fast-cluster and genetic algorithm
    • Liu F., Lu P., and Pei R. A new fuzzy modeling and identification based on fast-cluster and genetic algorithm. Intell. Contr. Automat. 1 (2004) 290-293
    • (2004) Intell. Contr. Automat. , vol.1 , pp. 290-293
    • Liu, F.1    Lu, P.2    Pei, R.3
  • 12
    • 0000635694 scopus 로고    scopus 로고
    • Identifying fuzzy models utilizing genetic programming
    • Andreas B. Identifying fuzzy models utilizing genetic programming. Fuzzy Sets Syst. 113 (2000) 333-350
    • (2000) Fuzzy Sets Syst. , vol.113 , pp. 333-350
    • Andreas, B.1
  • 17
    • 1942438914 scopus 로고    scopus 로고
    • Adaptive hierarchical fair competition (AHFC) model for parallel evolutionary algorithms
    • Honolulu, Hawaii
    • J.J. Hu, E.D. Goodman, K.S. Seo, M. Pei, Adaptive hierarchical fair competition (AHFC) model for parallel evolutionary algorithms, in: GECCO2002-Genetic and Evolutionary Computation, IEEE, Honolulu, Hawaii, 2002, pp. 772-779.
    • (2002) GECCO2002-Genetic and Evolutionary Computation, IEEE , pp. 772-779
    • Hu, J.J.1    Goodman, E.D.2    Seo, K.S.3    Pei, M.4
  • 19
    • 0026943536 scopus 로고
    • Generating fuzzy rules from numerical data with applications
    • Wang L.X., and Mendel J.M. Generating fuzzy rules from numerical data with applications. IEEE Trans. Syst., Man, Cybernet. 22 6 (1992) 1414-1427
    • (1992) IEEE Trans. Syst., Man, Cybernet. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 20
    • 0003093755 scopus 로고
    • Predicting the Mackey-Glass time series with cascade-correlation learning
    • Touretzky D., Hinton G., and Sejnowski T. (Eds), Carnegic Mellon University
    • Crowder III R.S. Predicting the Mackey-Glass time series with cascade-correlation learning. In: Touretzky D., Hinton G., and Sejnowski T. (Eds). Proceedings of the 1990 Connectionist Models Summer School (1990), Carnegic Mellon University 117-123
    • (1990) Proceedings of the 1990 Connectionist Models Summer School , pp. 117-123
    • Crowder III, R.S.1
  • 21
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybernet. 23 3 (1993) 665-685
    • (1993) IEEE Trans. Syst., Man, Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 22
    • 0032301756 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a fuzzy neural network
    • Maguire L.P., Roche B., McGinnity T.M., and McDaid L.J. Predicting a chaotic time series using a fuzzy neural network. Inform. Sci. 112 (1998) 125-136
    • (1998) Inform. Sci. , vol.112 , pp. 125-136
    • Maguire, L.P.1    Roche, B.2    McGinnity, T.M.3    McDaid, L.J.4
  • 23
    • 4344594491 scopus 로고    scopus 로고
    • Design of adaptive Takagi-Sugeno-Kang fuzzy models
    • Kukolj D. Design of adaptive Takagi-Sugeno-Kang fuzzy models. Appl. Soft Comput. 2 (2002) 89-103
    • (2002) Appl. Soft Comput. , vol.2 , pp. 89-103
    • Kukolj, D.1
  • 24
    • 0036802284 scopus 로고    scopus 로고
    • Identification of evolving fuzzy rule-based models
    • Angelov P., and Buswell R. Identification of evolving fuzzy rule-based models. IEEE Trans. Fuzzy Syst. 10 5 (2002) 667-677
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.5 , pp. 667-677
    • Angelov, P.1    Buswell, R.2
  • 25
    • 30344473621 scopus 로고    scopus 로고
    • NFI: a neuro-fuzzy inference method for transductive reasoning
    • Song Q., and Kasabov N.K. NFI: a neuro-fuzzy inference method for transductive reasoning. IEEE Trans. Fuzzy Syst. 13 6 (2005)
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.6
    • Song, Q.1    Kasabov, N.K.2
  • 26
    • 0043092359 scopus 로고    scopus 로고
    • Hybrid identification in fuzzy-neural networks
    • Oh S.K., Pedrycz W., and Park H.S. Hybrid identification in fuzzy-neural networks. Fuzzy Sets Syst. 138 2 (2003) 399-426
    • (2003) Fuzzy Sets Syst. , vol.138 , Issue.2 , pp. 399-426
    • Oh, S.K.1    Pedrycz, W.2    Park, H.S.3
  • 27
    • 4544238165 scopus 로고    scopus 로고
    • Fuzzy relation-based fuzzy neural-networks using a hybrid identification algorithm
    • Park H.S., and Oh S.K. Fuzzy relation-based fuzzy neural-networks using a hybrid identification algorithm. Int. J. Contr., Autom., Syst. 1 3 (2003) 289-300
    • (2003) Int. J. Contr., Autom., Syst. , vol.1 , Issue.3 , pp. 289-300
    • Park, H.S.1    Oh, S.K.2
  • 28
    • 4544255839 scopus 로고    scopus 로고
    • Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation
    • Park H.S., and Oh S.K. Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation. Int. J. Cont., Autom., Syst. 1 2 (2003) 194-202
    • (2003) Int. J. Cont., Autom., Syst. , vol.1 , Issue.2 , pp. 194-202
    • Park, H.S.1    Oh, S.K.2
  • 29
    • 0042825977 scopus 로고    scopus 로고
    • Implicit rule-based fuzzy-neural networks using the identification algorithm of hybrid scheme based on information granulation
    • Oh S.K., Pedrycz W., and Park H.S. Implicit rule-based fuzzy-neural networks using the identification algorithm of hybrid scheme based on information granulation. Adv. Eng. Inform. 16 4 (2002) 247-263
    • (2002) Adv. Eng. Inform. , vol.16 , Issue.4 , pp. 247-263
    • Oh, S.K.1    Pedrycz, W.2    Park, H.S.3
  • 30
    • 9344232002 scopus 로고    scopus 로고
    • A new approach to self-organizing multi-layer fuzzy polynomial neural networks based on genetic optimization
    • Oh S.K., and Pedrycz W. A new approach to self-organizing multi-layer fuzzy polynomial neural networks based on genetic optimization. Adv. Eng. Inform. 18 (2004) 29-39
    • (2004) Adv. Eng. Inform. , vol.18 , pp. 29-39
    • Oh, S.K.1    Pedrycz, W.2
  • 31
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • Sugeno M., and Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1 (1993) 7-31
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 32
    • 0000212165 scopus 로고    scopus 로고
    • About the use of fuzzy clustering techniques for fuzzy model identification
    • Gomez-Skarmeta A.F., Delgado M., and Vila M.A. About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets Syst. 106 (1999) 178-188
    • (1999) Fuzzy Sets Syst. , vol.106 , pp. 178-188
    • Gomez-Skarmeta, A.F.1    Delgado, M.2    Vila, M.A.3
  • 33
    • 0032164985 scopus 로고    scopus 로고
    • A simply identified Sugeno-type fuzzy model via double clustering
    • Kim E., Lee H., Park M., and Park M. A simply identified Sugeno-type fuzzy model via double clustering. Inform. Sci. 110 (1998) 25-39
    • (1998) Inform. Sci. , vol.110 , pp. 25-39
    • Kim, E.1    Lee, H.2    Park, M.3    Park, M.4
  • 35
    • 14644443622 scopus 로고    scopus 로고
    • On the use of the weighted fuzzy c-means in fuzzy modeling
    • Tsekouras G.E. On the use of the weighted fuzzy c-means in fuzzy modeling. Adv. Eng. Software 36 (2005) 287-300
    • (2005) Adv. Eng. Software , vol.36 , pp. 287-300
    • Tsekouras, G.E.1
  • 36
    • 60649109506 scopus 로고
    • Krishnaiah P.R., and Kanal L.N. (Eds), North-Holland, Amsterdam
    • In: Krishnaiah P.R., and Kanal L.N. (Eds). Classification, pattern recognition, and reduction of dimensionality. Handbook of Statistics vol. 2 (1982), North-Holland, Amsterdam
    • (1982) Handbook of Statistics , vol.2
  • 37
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., and Glass L. Oscillation and chaos in physiological control systems. Science 197 (1977) 287-289
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 38
    • 55649101249 scopus 로고    scopus 로고
    • Optimization of fuzzy set-fuzzy systems based on IG by means of GAs with successive tuning method
    • Park K.J., Oh S.K., and Kim H.K. Optimization of fuzzy set-fuzzy systems based on IG by means of GAs with successive tuning method. J. Elect. Eng. Technol. 3 1 (2008) 101-107
    • (2008) J. Elect. Eng. Technol. , vol.3 , Issue.1 , pp. 101-107
    • Park, K.J.1    Oh, S.K.2    Kim, H.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.