메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 139-166

Online linear and quadratic discriminant analysis with adaptive forgetting for streaming classification

Author keywords

Forgetting factor; Linear discriminant analysis; Online; Streaming data; Time varying classification

Indexed keywords

ADAPTIVE FILTERS; CONSUMER BEHAVIOR; DISCRIMINANT ANALYSIS; FACTOR ANALYSIS; TECHNOLOGY TRANSFER; TUNING;

EID: 84858324284     PISSN: 19321872     EISSN: 19321864     Source Type: Journal    
DOI: 10.1002/sam.10151     Document Type: Article
Times cited : (42)

References (79)
  • 2
    • 0035574130 scopus 로고    scopus 로고
    • Practical data mining in a large utility company
    • G. Hébrail, Practical data mining in a large utility company, Questiio 25(3) (2001), 509-520.
    • (2001) Questiio , vol.25 , Issue.3 , pp. 509-520
    • Hébrail, G.1
  • 3
    • 33749618778 scopus 로고    scopus 로고
    • Learning with drift detection, SBIA Brazilian Symposium on Artificial Intelligence
    • J. Gama, P. Medas, G. Castillo, and P. Rodrigues, Learning with drift detection, SBIA Brazilian Symposium on Artificial Intelligence, 2004, 286-295.
    • (2004) , pp. 286-295
    • Gama, J.1    Medas, P.2    Castillo, G.3    Rodrigues, P.4
  • 4
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress (with discussion)
    • D. J. Hand, Classifier technology and the illusion of progress (with discussion), Stat Sci 21(1) (2006), 1-34.
    • (2006) Stat Sci , vol.21 , Issue.1 , pp. 1-34
    • Hand, D.J.1
  • 5
    • 27544499218 scopus 로고    scopus 로고
    • Automatic target recognition using both measurements from identity sensors and motion information from tracking sensors, In Automatic Target Recognition, Proceedings of SPIE, USA
    • K. D. Copsey, Automatic target recognition using both measurements from identity sensors and motion information from tracking sensors, In Automatic Target Recognition, Proceedings of SPIE, USA, Vol. 5807, 2005, 273-283.
    • (2005) , vol.5807 , pp. 273-283
    • Copsey, K.D.1
  • 6
    • 85196115922 scopus 로고    scopus 로고
    • A comparison of ensemble and case-base maintenance techniques for handling concept drift in spam filtering, and, eds. 19th International Conference on Artificial Intelligence FLAIRS'2006
    • S. J. Delaney, P. Cunniungham, and A. Tsymbal, A comparison of ensemble and case-base maintenance techniques for handling concept drift in spam filtering, G. Sutcliffe and R. Goebel, eds. 19th International Conference on Artificial Intelligence FLAIRS'2006, 2006, 340-345.
    • (2006) , pp. 340-345
    • Delaney, S.J.1    Cunniungham, P.2    Tsymbal, A.3    Sutcliffe, G.4    Goebel, R.5
  • 8
    • 0342919763 scopus 로고    scopus 로고
    • Identifying and tracking changing interests
    • B. Crabtree and S. J. Soltysiak, Identifying and tracking changing interests, Int J Dig Lib 2(1) (1998), 38-53.
    • (1998) Int J Dig Lib , vol.2 , Issue.1 , pp. 38-53
    • Crabtree, B.1    Soltysiak, S.J.2
  • 9
    • 24644449205 scopus 로고    scopus 로고
    • Learning classification rules for telecom customer call data under concept drift
    • M. Black and R. Hickey, Learning classification rules for telecom customer call data under concept drift, Soft Comput 8(2) (2004), 102-108.
    • (2004) Soft Comput , vol.8 , Issue.2 , pp. 102-108
    • Black, M.1    Hickey, R.2
  • 10
    • 85196055810 scopus 로고    scopus 로고
    • Classifier design for population and sensor drift, In Structural, Syntactic and Statistical Pattern Recognition, LNCS 3138, Berlin, Springer-Verlag
    • K. Copsey and A. Webb, Classifier design for population and sensor drift, In Structural, Syntactic and Statistical Pattern Recognition, LNCS 3138, Berlin, Springer-Verlag, 2004, 744-752.
    • (2004) , pp. 744-752
    • Copsey, K.1    Webb, A.2
  • 11
    • 43549086207 scopus 로고    scopus 로고
    • Real-time data mining of non-stationary data streams from sensor networks
    • L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, Real-time data mining of non-stationary data streams from sensor networks, Informat Fusion 3(9) (2008), 344-353.
    • (2008) Informat Fusion , vol.3 , Issue.9 , pp. 344-353
    • Cohen, L.1    Avrahami-Bakish, G.2    Last, M.3    Kandel, A.4    Kipersztok, O.5
  • 12
    • 0000833531 scopus 로고    scopus 로고
    • The impact of changing populations on classifier performance, In KDD '99: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York
    • M. G. Kelly, D. J. Hand, and N. M. Adams, The impact of changing populations on classifier performance, In KDD '99: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 1999, 367-371.
    • (1999) , pp. 367-371
    • Kelly, M.G.1    Hand, D.J.2    Adams, N.M.3
  • 14
    • 77649158823 scopus 로고    scopus 로고
    • On the window size for classification in changing environments
    • L. I. Kuncheva and I. Zliobaite, On the window size for classification in changing environments, Intell Data Anal 13(6) (2009), 861-872.
    • (2009) Intell Data Anal , vol.13 , Issue.6 , pp. 861-872
    • Kuncheva, L.I.1    Zliobaite, I.2
  • 15
    • 12244250137 scopus 로고    scopus 로고
    • On demand classification of data streams, In KDD '04: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data mining, New York
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, On demand classification of data streams, In KDD '04: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data mining, New York, 2004, 503-508.
    • (2004) , pp. 503-508
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 16
    • 32544444980 scopus 로고    scopus 로고
    • Tracking concept drift with Gaussian mixture models, In Proceedings of SPIE, USA
    • J. Wu, X. S. Hua, and B. Zhang, Tracking concept drift with Gaussian mixture models, In Proceedings of SPIE, USA, Vol.5960, 2005, 1562-1570.
    • (2005) , vol.5960 , pp. 1562-1570
    • Wu, J.1    Hua, X.S.2    Zhang, B.3
  • 18
    • 33646409561 scopus 로고    scopus 로고
    • An adaptive nearest neighbour classification algorithm for data streams
    • Y. Law and C. Zaniolo, An adaptive nearest neighbour classification algorithm for data streams, LNCS 3721(3721) (2005), 108-120.
    • (2005) LNCS , vol.3721 , Issue.3721 , pp. 108-120
    • Law, Y.1    Zaniolo, C.2
  • 19
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams, In KDD '01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York
    • G. Hulten, L. Spencer, and P. Domingos, Mining time-changing data streams, In KDD '01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2001, 97-106.
    • (2001) , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 21
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: an ensemble method for drifting concepts
    • J. Z. Kolter and M. A. Maloof, Dynamic weighted majority: an ensemble method for drifting concepts, J Mach Learn Res 8 (2007), 2755-2790.
    • (2007) J Mach Learn Res , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 22
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers, In KDD'03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York
    • H. Wang, W. Fan, P. S. Yu, and J. Han, Mining concept-drifting data streams using ensemble classifiers, In KDD'03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2003, 226-235.
    • (2003) , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 23
    • 85196112251 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (SEA) for large-scale classification, In KDD'01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York
    • W. N. Street and Y. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, In KDD'01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2001, 377-382.
    • (2001) , pp. 377-382
    • Street, W.N.1    Kim, Y.2
  • 25
    • 85196103830 scopus 로고    scopus 로고
    • Convergence analysis of online linear discriminant analysis, In Proceedings of IJCNN 2000, Italy, Como
    • K. Hiraoka, S. Yoshizawa, K. Hidai, M. Hamahira, H. Mizoguchi, and T. Mishima, Convergence analysis of online linear discriminant analysis, In Proceedings of IJCNN 2000, Italy, Como, 2000.
    • (2000)
    • Hiraoka, K.1    Yoshizawa, S.2    Hidai, K.3    Hamahira, M.4    Mizoguchi, H.5    Mishima, T.6
  • 26
    • 85196117576 scopus 로고    scopus 로고
    • Incremental linear discriminant analysis using sufficient spanning set approximations, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA
    • T. K. Kim, S. F. Wong, B. Stenger, J. Kittler, and R. Cipolla, Incremental linear discriminant analysis using sufficient spanning set approximations, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007, 1-8.
    • (2007) , pp. 1-8
    • Kim, T.K.1    Wong, S.F.2    Stenger, B.3    Kittler, J.4    Cipolla, R.5
  • 27
    • 26844499076 scopus 로고    scopus 로고
    • Incremental linear discriminant analysis for classification of data streams
    • S. Pang, S. Ozawa, and N. Kasabov, Incremental linear discriminant analysis for classification of data streams, IEEE Trans Syst Man Cybern B: Cybern 35(5) (2005), 905-914.
    • (2005) IEEE Trans Syst Man Cybern B: Cybern , vol.35 , Issue.5 , pp. 905-914
    • Pang, S.1    Ozawa, S.2    Kasabov, N.3
  • 28
    • 58349105216 scopus 로고    scopus 로고
    • Adaptive learning rate for online linear discriminant classifiers, SSPR and SPR 2008
    • L. I. Kuncheva, and C. O. Plumpton, Adaptive learning rate for online linear discriminant classifiers, SSPR and SPR 2008, LNCS 5342 (2008), 510-519.
    • (2008) LNCS , vol.5342 , pp. 510-519
    • Kuncheva, L.I.1    Plumpton, C.O.2
  • 29
    • 77956493933 scopus 로고    scopus 로고
    • λ-perceptron: an adaptive classifier for data streams
    • N. G. Pavlidis, D. K. Tasoulis, N. M. Adams, and D. J. Hand, λ-perceptron: an adaptive classifier for data streams, Pattern Recogn 44(1) (2011), 78-96.
    • (2011) Pattern Recogn , vol.44 , Issue.1 , pp. 78-96
    • Pavlidis, N.G.1    Tasoulis, D.K.2    Adams, N.M.3    Hand, D.J.4
  • 30
    • 76349121306 scopus 로고    scopus 로고
    • Temporally adaptive estimation of logistic classifiers on data streams
    • C. Anagnostopoulos, D. K. Tasoulis, N. M. Adams, and D. J. Hand, Temporally adaptive estimation of logistic classifiers on data streams, ADAC 3(3) (2009), 243-261.
    • (2009) ADAC , vol.3 , Issue.3 , pp. 243-261
    • Anagnostopoulos, C.1    Tasoulis, D.K.2    Adams, N.M.3    Hand, D.J.4
  • 31
    • 76349092778 scopus 로고    scopus 로고
    • A comparison of batch and incremental supervised learning algorithms
    • L. Carbonara and A. Borrowman, A comparison of batch and incremental supervised learning algorithms, Principl Data Mining Knowl Discov, LNCS 1510 (1998), 264-272.
    • (1998) Principl Data Mining Knowl Discov, LNCS , vol.1510 , pp. 264-272
    • Carbonara, L.1    Borrowman, A.2
  • 32
    • 0041916184 scopus 로고    scopus 로고
    • Incremental support vector machine classification, Proceedings of the Second SIAM International Conference on Data Mining, Arlington, Virginia
    • G. Fung and O. L. Mangasarian, Incremental support vector machine classification, Proceedings of the Second SIAM International Conference on Data Mining, Arlington, Virginia, 2002, 247-260.
    • (2002) , pp. 247-260
    • Fung, G.1    Mangasarian, O.L.2
  • 33
    • 85196106966 scopus 로고    scopus 로고
    • APACS, Press release, Published Online, March 2007
    • APACS, Press release, Published Online, March 2007,
  • 34
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Mach Learn 23(1) (1996), 69-101.
    • (1996) Mach Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 39
    • 85196094888 scopus 로고    scopus 로고
    • Dynamic logistic regression, In Proceedings of the International Joint Conference on Neural Networks, Washington, DC
    • W. D. Penny and S. J. Roberts, Dynamic logistic regression, In Proceedings of the International Joint Conference on Neural Networks, Washington, DC, 1999, 3.
    • (1999) , pp. 3
    • Penny, W.D.1    Roberts, S.J.2
  • 40
    • 34249892438 scopus 로고    scopus 로고
    • A dynamic scorecard for monitoring baseline performance with application to tracking a mortgage portfolio
    • J. Whittaker, C. Whitehead, and M. Somers, A dynamic scorecard for monitoring baseline performance with application to tracking a mortgage portfolio, J Oper Res Soc 58(11) (2008), 911-921.
    • (2008) J Oper Res Soc , vol.58 , Issue.11 , pp. 911-921
    • Whittaker, J.1    Whitehead, C.2    Somers, M.3
  • 41
    • 0003807773 scopus 로고    scopus 로고
    • Upper Saddle River, NJ, USA, Prentice-Hall, Inc.
    • S. Haykin, Adaptive Filter Theory, Upper Saddle River, NJ, USA, Prentice-Hall, Inc., 1996.
    • (1996) Adaptive Filter Theory
    • Haykin, S.1
  • 42
    • 0027701698 scopus 로고
    • Performance analysis of the forgetting factor rls algorithm
    • L. Guo, L. Ljung, and P. Priouret, Performance analysis of the forgetting factor rls algorithm, Int J Adapt Contr Signal Process 7 (1993), 525-537.
    • (1993) Int J Adapt Contr Signal Process , vol.7 , pp. 525-537
    • Guo, L.1    Ljung, L.2    Priouret, P.3
  • 43
    • 0025241082 scopus 로고
    • Adaptation and tracking in system identification? a survey
    • L. Ljung and S. Gunnarsson, Adaptation and tracking in system identification? a survey, Automatica (J IFAC) 26(1) (1990), 7-21.
    • (1990) Automatica (J IFAC) , vol.26 , Issue.1 , pp. 7-21
    • Ljung, L.1    Gunnarsson, S.2
  • 44
    • 85196059378 scopus 로고
    • Unified framework of adaptive forgetting identification algorithms for time-varying systems, Proceedings of the IEEE Tencon
    • Z. Zhiyong, W. Shifu, F. Chongzhi, and K. Jingli, Unified framework of adaptive forgetting identification algorithms for time-varying systems, Proceedings of the IEEE Tencon, 1993, 424-427.
    • (1993) , pp. 424-427
    • Zhiyong, Z.1    Shifu, W.2    Chongzhi, F.3    Jingli, K.4
  • 46
    • 0023843120 scopus 로고
    • Modified least squares algorithm incorporating exponential resetting and forgetting
    • M. E. Salgado, G. C. Goodwin, and R. H. Middleton, Modified least squares algorithm incorporating exponential resetting and forgetting, Int J Contr 47(2) (1988), 477-491.
    • (1988) Int J Contr , vol.47 , Issue.2 , pp. 477-491
    • Salgado, M.E.1    Goodwin, G.C.2    Middleton, R.H.3
  • 48
    • 0022162577 scopus 로고
    • Adaptive forgetting in recursive identification through multiple models
    • P. Andersson, Adaptive forgetting in recursive identification through multiple models, Int J Contr 42 (1985), 1175-1193.
    • (1985) Int J Contr , vol.42 , pp. 1175-1193
    • Andersson, P.1
  • 49
    • 85196061317 scopus 로고
    • An adaptive algorithm with information-dependent data forgetting, In Proceedings of the American Control Conference, Seattle
    • M. Bodson, An adaptive algorithm with information-dependent data forgetting, In Proceedings of the American Control Conference, Seattle, 1995, 5.
    • (1995) , pp. 5
    • Bodson, M.1
  • 50
    • 0026170894 scopus 로고
    • Time-varying spectral estimation using ar models with variable forgetting factors
    • Y. S. Cho, S. B. Kim, and E. J. Powers, Time-varying spectral estimation using ar models with variable forgetting factors, IEEE Trans Signal Process 39(6) (1991), 1422-1426.
    • (1991) IEEE Trans Signal Process , vol.39 , Issue.6 , pp. 1422-1426
    • Cho, Y.S.1    Kim, S.B.2    Powers, E.J.3
  • 51
    • 0019632891 scopus 로고
    • Implementation of self-tuning regulators with variable forgetting factors
    • T. R. Fortescue, L. S. Kershenbaum, and B. E. Ydstie, Implementation of self-tuning regulators with variable forgetting factors, Automatica 17(6) (1981), 831-835.
    • (1981) Automatica , vol.17 , Issue.6 , pp. 831-835
    • Fortescue, T.R.1    Kershenbaum, L.S.2    Ydstie, B.E.3
  • 52
    • 0345096903 scopus 로고
    • Fast tracking RLS algorithm using novel variable forgetting factor with unity zone
    • D. J. Park, B. E. Jun, and J. H. Kim, Fast tracking RLS algorithm using novel variable forgetting factor with unity zone, Electron Lett 27(23) (1991), 2150-2151.
    • (1991) Electron Lett , vol.27 , Issue.23 , pp. 2150-2151
    • Park, D.J.1    Jun, B.E.2    Kim, J.H.3
  • 53
    • 85196122932 scopus 로고
    • Adaptive controllers with a variable forgetting factor, In Proceedings of the 22nd IEEE Conference on Decision and Control, San Antonio, TX
    • S. Saelid and B. Foss, Adaptive controllers with a variable forgetting factor, In Proceedings of the 22nd IEEE Conference on Decision and Control, San Antonio, TX, 1983.
    • (1983)
    • Saelid, S.1    Foss, B.2
  • 54
    • 85196067577 scopus 로고    scopus 로고
    • Gradual forgetting for adaptation to concept drift, In Proceedings of ECAI 2000 Workshop on Current Issues in Spatio-Temporal Reasoning, Berlin, Germany
    • I. Koychev, Gradual forgetting for adaptation to concept drift, In Proceedings of ECAI 2000 Workshop on Current Issues in Spatio-Temporal Reasoning, Berlin, Germany, 2000, 101-106.
    • (2000) , pp. 101-106
    • Koychev, I.1
  • 56
    • 85196103664 scopus 로고
    • Gain adaptation beats least squares? In Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, Connecticut, USA
    • R. S. Sutton, Gain adaptation beats least squares? In Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, Connecticut, USA, 1992.
    • (1992)
    • Sutton, R.S.1
  • 57
    • 85196064065 scopus 로고
    • Analysis of adaptive step size SA algorithms for parameter tracking, In Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL
    • H. J. Kushner and J. Yang, Analysis of adaptive step size SA algorithms for parameter tracking, In Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, 1994, 1.
    • (1994) , pp. 1
    • Kushner, H.J.1    Yang, J.2
  • 60
    • 0004069068 scopus 로고    scopus 로고
    • A bayesian approach to online learning, Cambridge, Cambridge University Press
    • M. Opper, A bayesian approach to online learning, Online Learning in Neural Networks, Cambridge, Cambridge University Press, 1998, 363-378.
    • (1998) Online Learning in Neural Networks , pp. 363-378
    • Opper, M.1
  • 61
    • 0017094666 scopus 로고
    • Properties of diagnostic data distributions
    • A. P. Dawid, Properties of diagnostic data distributions, Biometrics 32(3) (1976), 647-658.
    • (1976) Biometrics , vol.32 , Issue.3 , pp. 647-658
    • Dawid, A.P.1
  • 62
    • 48149102526 scopus 로고    scopus 로고
    • Selective fusion of delayed measurements in filtering, In IEEE International Workshop on Machine Learning for Signal Processing, IEEE MLSP), Thessaloniki, Greece
    • D. K. Tasoulis, N. M. Adams, and D. J. Hand, Selective fusion of delayed measurements in filtering, In IEEE International Workshop on Machine Learning for Signal Processing, (IEEE MLSP), Thessaloniki, Greece, 2007, 336-341.
    • (2007) , pp. 336-341
    • Tasoulis, D.K.1    Adams, N.M.2    Hand, D.J.3
  • 63
    • 85196103491 scopus 로고    scopus 로고
    • Online estimation with the multivariate Gaussian distribution, In Proceedings of the 20th Annual Conference On Learning Theory (COLT'07), Berlin, Spinger-Verlag
    • S. Dasgupta and D. Hsu, Online estimation with the multivariate Gaussian distribution, In Proceedings of the 20th Annual Conference On Learning Theory (COLT'07), Berlin, Spinger-Verlag, 2007.
    • (2007)
    • Dasgupta, S.1    Hsu, D.2
  • 64
    • 0242467619 scopus 로고    scopus 로고
    • Asymptotic properties of maximum weighted likelihood estimators
    • X. Wang, C. van Eeden, and J. V. Zidek, Asymptotic properties of maximum weighted likelihood estimators, J Stat Plan Infer 119(1) (2004), 37-54.
    • (2004) J Stat Plan Infer , vol.119 , Issue.1 , pp. 37-54
    • Wang, X.1    van Eeden, C.2    Zidek, J.V.3
  • 65
    • 85196112781 scopus 로고    scopus 로고
    • A Statistical Framework for Streaming Data Analysis, Ph.D. Thesis, Imperial College London
    • C. Anagnostopoulos, A Statistical Framework for Streaming Data Analysis, Ph.D. Thesis, Imperial College London, 2010.
    • (2010)
    • Anagnostopoulos, C.1
  • 67
    • 0029359844 scopus 로고
    • Analysis of adaptive step size SA algorithms for parameter tracking
    • H. J. Kushner and J. Yang, Analysis of adaptive step size SA algorithms for parameter tracking, IEEE Trans Automat Contr 40(8) (1995), 1403-1410.
    • (1995) IEEE Trans Automat Contr , vol.40 , Issue.8 , pp. 1403-1410
    • Kushner, H.J.1    Yang, J.2
  • 68
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: the RPROP algorithm, IEEE International Conference on Neural Networks
    • M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, IEEE International Conference on Neural Networks, 1993, 586-591.
    • (1993) , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 70
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • Q. McNemar, Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika 12(2) (1947), 153-157.
    • (1947) Psychometrika , vol.12 , Issue.2 , pp. 153-157
    • McNemar, Q.1
  • 71
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • E. R. DeLong, D. M. Delong, and D. L. Clarke-Pearson, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics 44 (1988), 837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    Delong, D.M.2    Clarke-Pearson, D.L.3
  • 72
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol Rev 65(6) (1958), 386-408.
    • (1958) Psychol Rev , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 73
    • 84988896527 scopus 로고    scopus 로고
    • Online optimisation for variable selection in data streams, In Proceedings of the 18th European Conference on Artificial Intelligence, ECAI 2008, Patras, Greece
    • C. Anagnostopoulos, D. Tasoulis, D. J. Hand, and N. Adams, Online optimisation for variable selection in data streams, In Proceedings of the 18th European Conference on Artificial Intelligence, ECAI 2008, Patras, Greece, 2008, 132-136.
    • (2008) , pp. 132-136
    • Anagnostopoulos, C.1    Tasoulis, D.2    Hand, D.J.3    Adams, N.4
  • 74
    • 85196123244 scopus 로고    scopus 로고
    • Early drift detection method, In ECML PKDD 2006 Workshop on Knowledge Discovery from Data Streams, Berlin, Germany
    • M. Baena-Garcia, J. del Campo-Avila, R. Fidalgo, A. Bifet, R. Gavalda, and R. Morales-Bueno, Early drift detection method, In ECML PKDD 2006 Workshop on Knowledge Discovery from Data Streams, Berlin, Germany, 2006, 77-86.
    • (2006) , pp. 77-86
    • Baena-Garcia, M.1    del Campo-Avila, J.2    Fidalgo, R.3    Bifet, A.4    Gavalda, R.5    Morales-Bueno, R.6
  • 76
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: a review
    • R. J. Bolton and D. J. Hand, Statistical fraud detection: a review, Stat Sci 17(3) (2002), 235-254.
    • (2002) Stat Sci , vol.17 , Issue.3 , pp. 235-254
    • Bolton, R.J.1    Hand, D.J.2
  • 77
    • 85196120619 scopus 로고    scopus 로고
    • Mining information from plastic card transaction streams, ed, In 18th International Conference on Computational Statistics, Porto, Portugal
    • D. K. Tasoulis, D. J. Weston, N. M. Adams, and D. J. Hand, Mining information from plastic card transaction streams, P. Brito, ed, In 18th International Conference on Computational Statistics, Porto, Portugal, 2008, 315-322.
    • (2008) , pp. 315-322
    • Tasoulis, D.K.1    Weston, D.J.2    Adams, N.M.3    Hand, D.J.4    Brito, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.