메뉴 건너뛰기




Volumn 92, Issue 8, 2012, Pages 1902-1915

Regulatory component analysis: A semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge

Author keywords

Gene expression; Genomic signal processing; Source extraction; Transcriptional regulatory network inference

Indexed keywords

BIOLOGICAL EXPERIMENTS; CELLULAR MECHANISMS; COMPONENT ANALYSIS; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; GENOMIC DATA; GENOMIC SIGNALS; GENOMIC-SIGNAL-PROCESSING; HIGH-THROUGHPUT; INFERENCE PROBLEM; KNOWLEDGE CONSTRAINTS; LATENT VARIABLE; LEAST-SQUARES FITTINGS; LINEAR LATENT VARIABLES; NETWORK COMPONENT ANALYSIS; REGULATORY NETWORK; REGULATORY PROTEIN; REGULATORY SIGNALS; RESEARCH TOPICS; SEMI-BLIND; SIGNALTONOISE RATIO (SNR); SOURCE EXTRACTION; SYSTEMS BIOLOGY; TRANSCRIPTIONAL REGULATORY NETWORK INFERENCE; TRANSCRIPTIONAL REGULATORY NETWORKS;

EID: 84858070004     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2011.11.028     Document Type: Article
Times cited : (4)

References (45)
  • 2
    • 77955474497 scopus 로고    scopus 로고
    • A quick guide to large-scale genomic data mining
    • C. Huttenhower, and O. Hofmann A quick guide to large-scale genomic data mining PLoS Computational Biology 6 5 2010 e1000779
    • (2010) PLoS Computational Biology , vol.6 , Issue.5 , pp. 1000779
    • Huttenhower, C.1    Hofmann, O.2
  • 3
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: Integrating 'omics' data sets
    • A. Joyce, and B. Palsson The model organism as a system: integrating 'omics' data sets Nature Reviews Molecular Cell Biology 7 3 2006 198 210
    • (2006) Nature Reviews Molecular Cell Biology , vol.7 , Issue.3 , pp. 198-210
    • Joyce, A.1    Palsson, B.2
  • 4
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
    • R. Clarke, H.W. Ressom, A. Wang, J. Xuan, M.C. Liu, E.A. Gehan, and Y. Wang The properties of high-dimensional data spaces: implications for exploring gene and protein expression data Nature Reviews Cancer 8 1 2008 37 49
    • (2008) Nature Reviews Cancer , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6    Wang, Y.7
  • 5
    • 85032751504 scopus 로고    scopus 로고
    • Research issues in genomic signal processing
    • DOI 10.1109/MSP.2005.1550189
    • E.R. Dougherty, A. Datta, and C. Sima Research issues in genomic signal processing IEEE Signal Processing Magazine 22 6 2005 46 68 (Pubitemid 46404903)
    • (2005) IEEE Signal Processing Magazine , vol.22 , Issue.6 , pp. 46-68
    • Dougherty, E.R.1    Datta, A.2    Sima, C.3
  • 6
    • 85032751645 scopus 로고    scopus 로고
    • How will bioinformatics impact signal processing research?
    • C. Jie, L. Huai, S. Kaihua, and B. Kim How will bioinformatics impact signal processing research? IEEE Signal Processing Magazine 20 6 2003 106 206
    • (2003) IEEE Signal Processing Magazine , vol.20 , Issue.6 , pp. 106-206
    • Jie, C.1    Huai, L.2    Kaihua, S.3    Kim, B.4
  • 7
    • 0034307938 scopus 로고    scopus 로고
    • Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects
    • T.-P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. Sejnowski Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects Clinical Neurophysiology 111 10 2000 1745 1758
    • (2000) Clinical Neurophysiology , vol.111 , Issue.10 , pp. 1745-1758
    • Jung, T.-P.1    Makeig, S.2    Westerfield, M.3    Townsend, J.4    Courchesne, E.5    Sejnowski, T.6
  • 9
    • 4644240926 scopus 로고    scopus 로고
    • Metabolite fingerprinting: Detecting biological features by independent component analysis
    • DOI 10.1093/bioinformatics/bth270
    • M. Scholz, S. Gatzek, A. Sterling, O. Fiehn, and J. Selbig Metabolite fingerprinting: detecting biological features by independent component analysis Bioinformatics 20 15 2004 2447 2454 (Pubitemid 39433366)
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2447-2454
    • Scholz, M.1    Gatzek, S.2    Sterling, A.3    Fiehn, O.4    Selbig, J.5
  • 11
    • 33747865502 scopus 로고    scopus 로고
    • Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
    • D.S. Huang, and C.H. Zheng Independent component analysis-based penalized discriminant method for tumor classification using gene expression data Bioinformatics 22 15 2006 1855 1862
    • (2006) Bioinformatics , vol.22 , Issue.15 , pp. 1855-1862
    • Huang, D.S.1    Zheng, C.H.2
  • 12
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • S.I. Lee, and S. Batzoglou Application of independent component analysis to microarrays Genome Biology 4 11 2003 R76
    • (2003) Genome Biology , vol.4 , Issue.11 , pp. 76
    • Lee, S.I.1    Batzoglou, S.2
  • 13
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent coponent analysis
    • W. Liebermeister Linear modes of gene expression determined by independent component analysis Bioinformatics 18 1 2002 51 60 (Pubitemid 34145031)
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 51-60
    • Liebermeister, W.1
  • 14
    • 0033657261 scopus 로고    scopus 로고
    • Principal components analysis to summarize microarray experiments: Application to sporulation time series
    • S. Raychaudhuri, J.M. Stuart, and R.B. Altman Principal components analysis to summarize microarray experiments: application to sporulation time series Pacific Symposium on Biocomputing 2000 455 466
    • (2000) Pacific Symposium on Biocomputing , pp. 455-466
    • Raychaudhuri, S.1    Stuart, J.M.2    Altman, R.B.3
  • 15
    • 4444229045 scopus 로고    scopus 로고
    • Independent component analysis of microarray data in the study of endometrial cancer
    • DOI 10.1038/sj.onc.1207562
    • S.A. Saidi, C.M. Holland, D.P. Kreil, D.J. MacKay, D.S. Charnock-Jones, C.G. Print, and S.K. Smith Independent component analysis of microarray data in the study of endometrial cancer Oncogene 23 39 2004 6677 6683 (Pubitemid 39265532)
    • (2004) Oncogene , vol.23 , Issue.39 , pp. 6677-6683
    • Saidi, S.A.1    Holland, C.M.2    Kreil, D.P.3    MacKay, D.J.C.4    Charnock-Jones, D.S.5    Print, C.G.6    Smith, S.K.7
  • 16
    • 34248177279 scopus 로고    scopus 로고
    • How high is the level of technical noise in microarray data?
    • L. Klebanov, and A. Yakovlev How high is the level of technical noise in microarray data? Biology Direct 2 2007 9
    • (2007) Biology Direct , vol.2 , pp. 9
    • Klebanov, L.1    Yakovlev, A.2
  • 17
    • 0038388109 scopus 로고    scopus 로고
    • Reproducibility assessment of independent component analysis of expression ratios from DNA microarrays
    • DOI 10.1002/cfg.298
    • D.P. Kreil, and D.J. MacKay Reproducibility assessment of independent component analysis of expression ratios from DNA microarrays Comparative and Functional Genomics 4 3 2003 300 317 (Pubitemid 36818022)
    • (2003) Comparative and Functional Genomics , vol.4 , Issue.3 , pp. 300-317
    • Kreil, D.P.1    MacKay, D.J.C.2
  • 18
    • 8344242236 scopus 로고    scopus 로고
    • Overlearning in marginal distribution-based ICA: Analysis and solutions
    • J. Särelä, and R. Vigário Overlearning in marginal distribution-based ICA: analysis and solutions Journal of Machine Learning Research 4 2003 1447 1469
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 1447-1469
    • Särelä, J.1    Vigário, R.2
  • 19
    • 77950651089 scopus 로고    scopus 로고
    • The edges of understanding
    • A.D. Lander The edges of understanding BMC Biology 8 2010 40
    • (2010) BMC Biology , vol.8 , pp. 40
    • Lander, A.D.1
  • 20
    • 15244338624 scopus 로고    scopus 로고
    • GNCA: A framework for determining transcription factor activity based on transcriptome: Identifiability and numerical implementation
    • DOI 10.1016/j.ymben.2004.12.001, PII S1096717604000850
    • L.M. Tran, M.P. Brynildsen, K.C. Kao, J.K. Suen, and J.C. Liao gnca: a framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation Metabolic Engineering 7 2 2005 128 141 (Pubitemid 40387560)
    • (2005) Metabolic Engineering , vol.7 , Issue.2 , pp. 128-141
    • Tran, L.M.1    Brynildsen, M.P.2    Kao, K.C.3    Suen, J.K.4    Liao, J.C.5
  • 22
    • 33845365903 scopus 로고    scopus 로고
    • A Gibbs sampler for the identification of gene expression and network connectivity consistency
    • DOI 10.1093/bioinformatics/btl541
    • M.P. Brynildsen, L.M. Tran, and J.C. Liao A gibbs sampler for the identification of gene expression and network connectivity consistency Bioinformatics 22 24 2006 3040 3046 (Pubitemid 44884079)
    • (2006) Bioinformatics , vol.22 , Issue.24 , pp. 3040-3046
    • Brynildsen, M.P.1    Tran, L.M.2    Liao, J.C.3
  • 23
    • 41949086748 scopus 로고    scopus 로고
    • Motif-directed network component analysis for regulatory network inference
    • C. Wang, J. Xuan, L. Chen, P. Zhao, Y. Wang, R. Clarke, and E. Hoffman Motif-directed network component analysis for regulatory network inference BMC Bioinformatics 9 Suppl 1 2008 S21
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 1 , pp. 21
    • Wang, C.1    Xuan, J.2    Chen, L.3    Zhao, P.4    Wang, Y.5    Clarke, R.6    Hoffman, E.7
  • 24
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • J.F. Cardoso Blind signal separation: statistical principles Proceedings of the IEEE 86 10 1998 2009 2025
    • (1998) Proceedings of the IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.F.1
  • 26
    • 85032778754 scopus 로고    scopus 로고
    • Expression technology - A review of the performance and interpretation of expression microarrays
    • P. Stafford, and C. Yidong Expression technology - a review of the performance and interpretation of expression microarrays IEEE Signal Processing Magazine 24 1 2007 18 26
    • (2007) IEEE Signal Processing Magazine , vol.24 , Issue.1 , pp. 18-26
    • Stafford, P.1    Yidong, C.2
  • 27
    • 33746864004 scopus 로고    scopus 로고
    • ChIP-chip comes of age for genome-wide functional analysis
    • DOI 10.1158/0008-5472.CAN-06-0276
    • J. Wu, L.T. Smith, C. Plass, and T.H. Huang Chipchip comes of age for genome-wide functional analysis Cancer Research 66 14 2006 6899 6902 (Pubitemid 44197662)
    • (2006) Cancer Research , vol.66 , Issue.14 , pp. 6899-6902
    • Wu, J.1    Smith, L.T.2    Plass, C.3    Huang, T.H.-M.4
  • 28
    • 33748765218 scopus 로고    scopus 로고
    • Computational biology: Toward deciphering gene regulatory information in mammalian genomes
    • H. Ji, and W.H. Wong Computational biology: toward deciphering gene regulatory information in mammalian genomes Biometrics 62 3 2006 645 663
    • (2006) Biometrics , vol.62 , Issue.3 , pp. 645-663
    • Ji, H.1    Wong, W.H.2
  • 29
    • 44349190399 scopus 로고    scopus 로고
    • Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data
    • DOI 10.1093/bioinformatics/btn131
    • C. Chang, Z. Ding, Y.S. Hung, and P.C. Fung Fast network component analysis (fastnca) for gene regulatory network reconstruction from microarray data Bioinformatics 24 11 2008 1349 1358 (Pubitemid 351737140)
    • (2008) Bioinformatics , vol.24 , Issue.11 , pp. 1349-1358
    • Chang, C.1    Ding, Z.2    Hung, Y.S.3    Fung, P.C.W.4
  • 31
    • 3843148327 scopus 로고    scopus 로고
    • From blind signal extraction to blind instantaneous signal separation: Criteria, algorithms, and stability
    • S.A. Cruces-Alvarez, A. Cichocki, and S. Amari From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability IEEE Transactions on Neural Networks 15 4 2004 859 873
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.4 , pp. 859-873
    • Cruces-Alvarez, S.A.1    Cichocki, A.2    Amari, S.3
  • 33
    • 8344236020 scopus 로고    scopus 로고
    • Blind source separation via generalized eigenvalue decomposition
    • L. Parra, and P. Sajda Blind source separation via generalized eigenvalue decomposition Journal of Machine Learning Research 4 2003 1261 1269
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 1261-1269
    • Parra, L.1    Sajda, P.2
  • 35
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • J.F. Cardoso High-order contrasts for independent component analysis Neural Computation 11 1999 157 192
    • (1999) Neural Computation , vol.11 , pp. 157-192
    • Cardoso, J.F.1
  • 36
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen Fast and robust fixed-point algorithms for independent component analysis IEEE Transactions on Neural Networks 10 3 1999 626 634
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 39
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher The use of multiple measurements in taxonomic problems Annals of Eugenics 7 2 1936 179 188
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 40
  • 43
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • V.A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts Inferring regulatory networks from expression data using tree-based methods PLoS One 5 9 2010 e12776
    • (2010) PLoS One , vol.5 , Issue.9 , pp. 12776
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 44
    • 77955477557 scopus 로고    scopus 로고
    • Analysis of combinatorial regulation: Scaling of partnerships between regulators with the number of governed targets
    • N. Bhardwaj, M.B. Carson, A. Abyzov, K. Yan, H. Lu, and M.B. Gerstein Analysis of combinatorial regulation: scaling of partnerships between regulators with the number of governed targets PLoS Computational Biology 6 5 2010 e1000755
    • (2010) PLoS Computational Biology , vol.6 , Issue.5 , pp. 1000755
    • Bhardwaj, N.1    Carson, M.B.2    Abyzov, A.3    Yan, K.4    Lu, H.5    Gerstein, M.B.6
  • 45
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • C. Sabatti, and G.M. James Bayesian sparse hidden components analysis for transcription regulation networks Bioinformatics 22 6 2006 739 746
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 739-746
    • Sabatti, C.1    James, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.