-
1
-
-
52949102581
-
Classifying evolving data streams using dynamic streaming random forests
-
urin, Italy
-
H . Abdulsalam, D . Skillicorn, and P. Martin. Classifying evolving data streams using dynamic streaming random forests. In DEXA, pages 643-651, urin, Italy, 2008
-
(2008)
DEXA
, pp. 643-651
-
-
Abdulsalam, H.1
Skillicorn, D.2
Martin, P.3
-
2
-
-
85200112380
-
Classifying evolving data streams using dynamic streaming random forest
-
H. Abdulsalam, D. Skillicorn, and P. Martin. Classifying evolving data streams using dynamic streaming random forest. In FSKD, pages 275-279,2009
-
(2009)
FSKD
, pp. 275-279
-
-
Abdulsalam, H.1
Skillicorn, D.2
Martin, P.3
-
3
-
-
12244250137
-
On demand classification of data streams
-
Seattle, WA
-
C. Aggarwal, J. Han, J. Wang, and P. Yu. On demand classification of data streams. In KDD, pages 503-508, Seattle, WA, 2004
-
(2004)
KDD
, pp. 503-508
-
-
Aggarwal, C.1
Han, J.2
Wang, J.3
Yu, P.4
-
4
-
-
52649107516
-
LOCUST: An online analytical processing framework for high dimensional classification of data streams
-
Cancun, Mexico
-
C. Aggarwal and P. Yu. LOCUST: An online analytical processing framework for high dimensional classification of data streams. In ICDE, pages 426-435, Cancun, Mexico, 2008
-
(2008)
ICDE
, pp. 426-435
-
-
Aggarwal, C.1
Yu, P.2
-
5
-
-
85200160345
-
A framework for projected clustering of high dimensional data streams
-
C. Agrawal, 1. Han, J. Wang, and P. Yu. A framework for projected clustering of high dimensional data streams. In VLDB, 2004
-
(2004)
VLDB
-
-
Agrawal, C.1
Han, J.2
Wang, J.3
Yu, P.4
-
6
-
-
3042597440
-
Learning multi-label scene classification
-
M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9): 1757-1771, 2004
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
7
-
-
8344282787
-
Learning multi-label altenating decision tree from texts and data
-
Leipzig, Germany
-
F. D. Comite, R. Gilleron, and M. Tommasi. Learning multi-label altenating decision tree from texts and data. In MLDM, pages 35-49, Leipzig, Germany, 2003
-
(2003)
MLDM
, pp. 35-49
-
-
Comite, F.D.1
Gilleron, R.2
Tommasi, M.3
-
8
-
-
77956522919
-
Bayes-optimal multilabel classification via probabilistic classifier chains
-
Haifa, Israel
-
K. Dembczynski, W. Cheng, and E. Hullermeier. Bayes-optimal multilabel classification via probabilistic classifier chains. In ICML, pages 279-286, Haifa, Israel, 2010
-
(2010)
ICML
, pp. 279-286
-
-
Dembczynski, K.1
Cheng, W.2
Hullermeier, E.3
-
9
-
-
0034592938
-
Mining high-speed data streams
-
Boston, MA
-
P. Domingos and G. Hulten. Mining high-speed data streams. In KDD, pages 71-80, Boston, MA, 2000
-
(2000)
KDD
, pp. 71-80
-
-
Domingos, P.1
Hulten, G.2
-
10
-
-
76649137444
-
A kernel method for multi-labelled classification
-
A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In NIPS, pages 681-687. 2002
-
(2002)
NIPS
, pp. 681-687
-
-
Elisseeff, A.1
Weston, J.2
-
11
-
-
33750313729
-
Is random model better? On its accuracy and efficiency
-
Melbourne, FL
-
W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? On its accuracy and efficiency. In ICDM, pages 51-58, Melbourne, FL, 2003
-
(2003)
ICDM
, pp. 51-58
-
-
Fan, W.1
Wang, H.2
Ma, P.S.3
Ma, S.4
-
12
-
-
38049123909
-
Random k-Iabelsets: An ensemble method for multilabel classification
-
Warsaw, Poland
-
I. Vlahavas G. Tsoumakas. Random k-Iabelsets: An ensemble method for multilabel classification. In ECML, pages 406-417, Warsaw, Poland, 2007
-
(2007)
ECML
, pp. 406-417
-
-
Vlahavas, I.1
Tsoumakas, G.2
-
13
-
-
70350649252
-
Accurate decision trees for mining high-speed data streams
-
Washington, DC
-
J. Gama, R. Rocha, and P. Medas. Accurate decision trees for mining high-speed data streams. In KDD, pages 523-528, Washington, DC, 2003
-
(2003)
KDD
, pp. 523-528
-
-
Gama, J.1
Rocha, R.2
Medas, P.3
-
14
-
-
70350664414
-
Issues in evaluation of stream learning algorithm
-
Paris, France
-
J. Gama, R. Sebastia, and P. P. Rodrigues. Issues in evaluation of stream learning algorithm. In KDD, pages 329-338, Paris, France, 2009
-
(2009)
KDD
, pp. 329-338
-
-
Gama, J.1
Sebastia, R.2
Rodrigues, P.P.3
-
15
-
-
33745767102
-
Collective multi-label classification
-
Bremen, Germany
-
N. Ghamrawi and A. McCallum. Collective multi-label classification. In C1KM, pages 195-200, Bremen, Germany, 2005
-
(2005)
C1KM
, pp. 195-200
-
-
Ghamrawi, N.1
McCallum, A.2
-
16
-
-
7444230008
-
Discriminative methods for multi-labeled classification
-
Sydney, Australia
-
S. Godbole and S. Sarawagi. Discriminative methods for multi-labeled classification. In PAKDD, pages 22-30, Sydney, Australia, 2004
-
(2004)
PAKDD
, pp. 22-30
-
-
Godbole, S.1
Sarawagi, S.2
-
17
-
-
0035789299
-
Mining time changing data streams
-
San Francisco, CA
-
G. Hulten, L. Spencer, and P. Domingos. Mining time changing data streams. In KDD, pages 97-106, San Francisco, CA, 2001
-
(2001)
KDD
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
18
-
-
77952325551
-
Efficient decision tree construction on streaming data
-
Washington, DC
-
R. Jin and G. Agrawal. Efficient decision tree construction on streaming data. In KDD, pages 571-576, Washington, DC, 2003
-
(2003)
KDD
, pp. 571-576
-
-
Jin, R.1
Agrawal, G.2
-
19
-
-
33845583962
-
Correlated label propagation with application to multi-label learning
-
New York, NY
-
F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with application to multi-label learning. In C VPR, pages 1719-1726, New York, NY, 2006
-
(2006)
CVPR
, pp. 1719-1726
-
-
Kang, F.1
Jin, R.2
Sukthankar, R.3
-
20
-
-
84899033524
-
Maximal margin labeling for mUlti-topic text categorization
-
H. Kazawa, T. Izumitani, H. Taira, and E. Maeda. Maximal margin labeling for mUlti-topic text categorization. In NiPS, pages 649-656. 2005
-
(2005)
NiPS
, pp. 649-656
-
-
Kazawa, H.1
Izumitani, T.2
Taira, H.3
Maeda, E.4
-
21
-
-
84876811202
-
RCVI: A new benchmark collection for text categorization research
-
D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCVI: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
22
-
-
33750718803
-
Semi-supervised multi-label learning by constrained non-negative matrix factorization
-
Boston, MA
-
Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In AAAi, pages 421-426, Boston, MA, 2006
-
(2006)
AAAi
, pp. 421-426
-
-
Liu, Y.1
Jin, R.2
Yang, L.3
-
23
-
-
67049160126
-
A practical approach to classifY evolving data streams: Training with limited amount of labeled data
-
Pisa, Italy
-
M. Masud, J. Gao, L. Khan, and J. Han. A practical approach to classifY evolving data streams: Training with limited amount of labeled data. In ICDM, pages 929-934, Pisa, Italy, 2008
-
(2008)
ICDM
, pp. 929-934
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
-
24
-
-
0003223784
-
Multi-label text classification with a mixture model trained by EM
-
Orlando, FL
-
A. McCallum. Multi-label text classification with a mixture model trained by EM. In AAAi '99 Workshop on Text Learning, Orlando, FL, 1999
-
(1999)
AAAi '99 Workshop on Text Learning
-
-
McCallum, A.1
-
27
-
-
70349968175
-
Classifier chains for multi-label classification
-
Bled, Slovenia
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. In ECML, pages 254-269, Bled, Slovenia, 2009
-
(2009)
ECML
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
28
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
30
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia. In
-
New York, NY
-
C. Snoek, M. Worring, J. Gernert, J. Geusebroek, and A. Smeulders. The challenge problem for automated detection of 101 semantic concepts in multimedia. In ACM Multimedia, pages 421-430,New York, NY,2006
-
(2006)
ACM Multimedia
, pp. 421-430
-
-
Snoek, C.1
Worring, M.2
Gernert, J.3
Geusebroek, J.4
Smeulders, A.5
-
31
-
-
0035788947
-
A streaming ensemble algorithm (SEA) for largescale classification
-
San Francisco, CA
-
W. Street and Y. Kim. A streaming ensemble algorithm (SEA) for largescale classification. In KDD, pages 377-382, San Francisco, CA, 2001
-
(2001)
KDD
, pp. 377-382
-
-
Street, W.1
Kim, Y.2
-
32
-
-
84958141402
-
Parametric mixture models for multi-labeled text
-
N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In NiPS, pages 721-728. 2003
-
(2003)
NiPS
, pp. 721-728
-
-
Ueda, N.1
Saito, K.2
-
33
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
Washington, DC
-
H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In KDD, pages 226-235, Washington, DC, 2003
-
(2003)
KDD
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
34
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
35
-
-
83655189796
-
Dealing with concept drift and class imbalance in multi-label stream classification
-
E. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas. Dealing with concept drift and class imbalance in multi-label stream classification. In JJCAi, Barcelona, Spain, 2011
-
(2011)
JJCAi, Barcelona, Spain
-
-
Xioufis, E.1
Spiliopoulou, M.2
Tsoumakas, G.3
Vlahavas, I.4
-
36
-
-
33748366796
-
Multilabel neural networks with applications to functional genomics and text categorization
-
M.-L. Zhang and Z.-H. Zhou. Multilabel neural networks with applications to functional genomics and text categorization. iEEE Transactions on Knowledge and Data Engineering, 18(10):1479-1493, 2006
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.10
, pp. 1479-1493
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
37
-
-
33947681316
-
MI-knn: A lazy learning approach to multi-label learning
-
M.-L. Zhang and Z.-H. Zhou. MI-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
38
-
-
80054948516
-
Multilabel classification without multi-label cost
-
Columbus, OH
-
X. Zhang, Q. Yuan, S. Zhao, W. Fan, W. Zheng, and D. Wang. Multilabel classification without multi-label cost. In SDM, pages 778-789, Columbus, OH, 2010
-
(2010)
SDM
, pp. 778-789
-
-
Zhang, X.1
Yuan, Q.2
Zhao, S.3
Fan, W.4
Zheng, W.5
Wang, D.6
-
39
-
-
84885572482
-
Multi-labelled classification using maximum entropy method
-
Salvador, Brazil
-
S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In SiGiR, pages 274-281, Salvador, Brazil, 2005.
-
(2005)
SiGiR
, pp. 274-281
-
-
Zhu, S.1
Ji, X.2
Xu, W.3
Gong, Y.4
|