메뉴 건너뛰기




Volumn , Issue , 2011, Pages 95-104

An ensemble-based approach to fast classification of multi-label data streams

Author keywords

data mining; Data stream; multi label classification; random tree

Indexed keywords

CLASSIFICATION (OF INFORMATION); TREES (MATHEMATICS);

EID: 84857532833     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.4108/icst.collaboratecom.2011.247086     Document Type: Conference Paper
Times cited : (40)

References (39)
  • 1
    • 52949102581 scopus 로고    scopus 로고
    • Classifying evolving data streams using dynamic streaming random forests
    • urin, Italy
    • H . Abdulsalam, D . Skillicorn, and P. Martin. Classifying evolving data streams using dynamic streaming random forests. In DEXA, pages 643-651, urin, Italy, 2008
    • (2008) DEXA , pp. 643-651
    • Abdulsalam, H.1    Skillicorn, D.2    Martin, P.3
  • 2
    • 85200112380 scopus 로고    scopus 로고
    • Classifying evolving data streams using dynamic streaming random forest
    • H. Abdulsalam, D. Skillicorn, and P. Martin. Classifying evolving data streams using dynamic streaming random forest. In FSKD, pages 275-279,2009
    • (2009) FSKD , pp. 275-279
    • Abdulsalam, H.1    Skillicorn, D.2    Martin, P.3
  • 3
    • 12244250137 scopus 로고    scopus 로고
    • On demand classification of data streams
    • Seattle, WA
    • C. Aggarwal, J. Han, J. Wang, and P. Yu. On demand classification of data streams. In KDD, pages 503-508, Seattle, WA, 2004
    • (2004) KDD , pp. 503-508
    • Aggarwal, C.1    Han, J.2    Wang, J.3    Yu, P.4
  • 4
    • 52649107516 scopus 로고    scopus 로고
    • LOCUST: An online analytical processing framework for high dimensional classification of data streams
    • Cancun, Mexico
    • C. Aggarwal and P. Yu. LOCUST: An online analytical processing framework for high dimensional classification of data streams. In ICDE, pages 426-435, Cancun, Mexico, 2008
    • (2008) ICDE , pp. 426-435
    • Aggarwal, C.1    Yu, P.2
  • 5
    • 85200160345 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • C. Agrawal, 1. Han, J. Wang, and P. Yu. A framework for projected clustering of high dimensional data streams. In VLDB, 2004
    • (2004) VLDB
    • Agrawal, C.1    Han, J.2    Wang, J.3    Yu, P.4
  • 6
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9): 1757-1771, 2004
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 7
    • 8344282787 scopus 로고    scopus 로고
    • Learning multi-label altenating decision tree from texts and data
    • Leipzig, Germany
    • F. D. Comite, R. Gilleron, and M. Tommasi. Learning multi-label altenating decision tree from texts and data. In MLDM, pages 35-49, Leipzig, Germany, 2003
    • (2003) MLDM , pp. 35-49
    • Comite, F.D.1    Gilleron, R.2    Tommasi, M.3
  • 8
    • 77956522919 scopus 로고    scopus 로고
    • Bayes-optimal multilabel classification via probabilistic classifier chains
    • Haifa, Israel
    • K. Dembczynski, W. Cheng, and E. Hullermeier. Bayes-optimal multilabel classification via probabilistic classifier chains. In ICML, pages 279-286, Haifa, Israel, 2010
    • (2010) ICML , pp. 279-286
    • Dembczynski, K.1    Cheng, W.2    Hullermeier, E.3
  • 9
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams
    • Boston, MA
    • P. Domingos and G. Hulten. Mining high-speed data streams. In KDD, pages 71-80, Boston, MA, 2000
    • (2000) KDD , pp. 71-80
    • Domingos, P.1    Hulten, G.2
  • 10
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In NIPS, pages 681-687. 2002
    • (2002) NIPS , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 11
    • 33750313729 scopus 로고    scopus 로고
    • Is random model better? On its accuracy and efficiency
    • Melbourne, FL
    • W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? On its accuracy and efficiency. In ICDM, pages 51-58, Melbourne, FL, 2003
    • (2003) ICDM , pp. 51-58
    • Fan, W.1    Wang, H.2    Ma, P.S.3    Ma, S.4
  • 12
    • 38049123909 scopus 로고    scopus 로고
    • Random k-Iabelsets: An ensemble method for multilabel classification
    • Warsaw, Poland
    • I. Vlahavas G. Tsoumakas. Random k-Iabelsets: An ensemble method for multilabel classification. In ECML, pages 406-417, Warsaw, Poland, 2007
    • (2007) ECML , pp. 406-417
    • Vlahavas, I.1    Tsoumakas, G.2
  • 13
    • 70350649252 scopus 로고    scopus 로고
    • Accurate decision trees for mining high-speed data streams
    • Washington, DC
    • J. Gama, R. Rocha, and P. Medas. Accurate decision trees for mining high-speed data streams. In KDD, pages 523-528, Washington, DC, 2003
    • (2003) KDD , pp. 523-528
    • Gama, J.1    Rocha, R.2    Medas, P.3
  • 14
    • 70350664414 scopus 로고    scopus 로고
    • Issues in evaluation of stream learning algorithm
    • Paris, France
    • J. Gama, R. Sebastia, and P. P. Rodrigues. Issues in evaluation of stream learning algorithm. In KDD, pages 329-338, Paris, France, 2009
    • (2009) KDD , pp. 329-338
    • Gama, J.1    Sebastia, R.2    Rodrigues, P.P.3
  • 15
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • Bremen, Germany
    • N. Ghamrawi and A. McCallum. Collective multi-label classification. In C1KM, pages 195-200, Bremen, Germany, 2005
    • (2005) C1KM , pp. 195-200
    • Ghamrawi, N.1    McCallum, A.2
  • 16
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Sydney, Australia
    • S. Godbole and S. Sarawagi. Discriminative methods for multi-labeled classification. In PAKDD, pages 22-30, Sydney, Australia, 2004
    • (2004) PAKDD , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 17
    • 0035789299 scopus 로고    scopus 로고
    • Mining time changing data streams
    • San Francisco, CA
    • G. Hulten, L. Spencer, and P. Domingos. Mining time changing data streams. In KDD, pages 97-106, San Francisco, CA, 2001
    • (2001) KDD , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 18
    • 77952325551 scopus 로고    scopus 로고
    • Efficient decision tree construction on streaming data
    • Washington, DC
    • R. Jin and G. Agrawal. Efficient decision tree construction on streaming data. In KDD, pages 571-576, Washington, DC, 2003
    • (2003) KDD , pp. 571-576
    • Jin, R.1    Agrawal, G.2
  • 19
    • 33845583962 scopus 로고    scopus 로고
    • Correlated label propagation with application to multi-label learning
    • New York, NY
    • F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with application to multi-label learning. In C VPR, pages 1719-1726, New York, NY, 2006
    • (2006) CVPR , pp. 1719-1726
    • Kang, F.1    Jin, R.2    Sukthankar, R.3
  • 20
    • 84899033524 scopus 로고    scopus 로고
    • Maximal margin labeling for mUlti-topic text categorization
    • H. Kazawa, T. Izumitani, H. Taira, and E. Maeda. Maximal margin labeling for mUlti-topic text categorization. In NiPS, pages 649-656. 2005
    • (2005) NiPS , pp. 649-656
    • Kazawa, H.1    Izumitani, T.2    Taira, H.3    Maeda, E.4
  • 22
    • 33750718803 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Boston, MA
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In AAAi, pages 421-426, Boston, MA, 2006
    • (2006) AAAi , pp. 421-426
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 23
    • 67049160126 scopus 로고    scopus 로고
    • A practical approach to classifY evolving data streams: Training with limited amount of labeled data
    • Pisa, Italy
    • M. Masud, J. Gao, L. Khan, and J. Han. A practical approach to classifY evolving data streams: Training with limited amount of labeled data. In ICDM, pages 929-934, Pisa, Italy, 2008
    • (2008) ICDM , pp. 929-934
    • Masud, M.1    Gao, J.2    Khan, L.3    Han, J.4
  • 24
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by EM
    • Orlando, FL
    • A. McCallum. Multi-label text classification with a mixture model trained by EM. In AAAi '99 Workshop on Text Learning, Orlando, FL, 1999
    • (1999) AAAi '99 Workshop on Text Learning
    • McCallum, A.1
  • 27
    • 70349968175 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Bled, Slovenia
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. In ECML, pages 254-269, Bled, Slovenia, 2009
    • (2009) ECML , pp. 254-269
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 28
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 30
    • 34547172608 scopus 로고    scopus 로고
    • The challenge problem for automated detection of 101 semantic concepts in multimedia. In
    • New York, NY
    • C. Snoek, M. Worring, J. Gernert, J. Geusebroek, and A. Smeulders. The challenge problem for automated detection of 101 semantic concepts in multimedia. In ACM Multimedia, pages 421-430,New York, NY,2006
    • (2006) ACM Multimedia , pp. 421-430
    • Snoek, C.1    Worring, M.2    Gernert, J.3    Geusebroek, J.4    Smeulders, A.5
  • 31
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (SEA) for largescale classification
    • San Francisco, CA
    • W. Street and Y. Kim. A streaming ensemble algorithm (SEA) for largescale classification. In KDD, pages 377-382, San Francisco, CA, 2001
    • (2001) KDD , pp. 377-382
    • Street, W.1    Kim, Y.2
  • 32
    • 84958141402 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In NiPS, pages 721-728. 2003
    • (2003) NiPS , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 33
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • Washington, DC
    • H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In KDD, pages 226-235, Washington, DC, 2003
    • (2003) KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 34
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 36
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • M.-L. Zhang and Z.-H. Zhou. Multilabel neural networks with applications to functional genomics and text categorization. iEEE Transactions on Knowledge and Data Engineering, 18(10):1479-1493, 2006
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1479-1493
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 37
    • 33947681316 scopus 로고    scopus 로고
    • MI-knn: A lazy learning approach to multi-label learning
    • M.-L. Zhang and Z.-H. Zhou. MI-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 38
    • 80054948516 scopus 로고    scopus 로고
    • Multilabel classification without multi-label cost
    • Columbus, OH
    • X. Zhang, Q. Yuan, S. Zhao, W. Fan, W. Zheng, and D. Wang. Multilabel classification without multi-label cost. In SDM, pages 778-789, Columbus, OH, 2010
    • (2010) SDM , pp. 778-789
    • Zhang, X.1    Yuan, Q.2    Zhao, S.3    Fan, W.4    Zheng, W.5    Wang, D.6
  • 39
    • 84885572482 scopus 로고    scopus 로고
    • Multi-labelled classification using maximum entropy method
    • Salvador, Brazil
    • S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In SiGiR, pages 274-281, Salvador, Brazil, 2005.
    • (2005) SiGiR , pp. 274-281
    • Zhu, S.1    Ji, X.2    Xu, W.3    Gong, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.