메뉴 건너뛰기




Volumn 17, Issue 2, 2012, Pages 73-90

Phytoalexins in defense against pathogens

Author keywords

[No Author keywords available]

Indexed keywords

PHYTOALEXINS; SESQUITERPENE;

EID: 84856693765     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2011.11.002     Document Type: Review
Times cited : (815)

References (165)
  • 1
    • 0032717491 scopus 로고    scopus 로고
    • Phytoalexins: what have we learned after 60 years?
    • Hammerschmidt R. Phytoalexins: what have we learned after 60 years?. Annu. Rev. Phytopathol. 1999, 37:285-306.
    • (1999) Annu. Rev. Phytopathol. , vol.37 , pp. 285-306
    • Hammerschmidt, R.1
  • 2
    • 79960799366 scopus 로고    scopus 로고
    • The phytoalexins from cultivated and wild crucifers: chemistry and biology
    • Pedras M.S.C., et al. The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat. Prod. Rep. 2011, 28:1381-1405.
    • (2011) Nat. Prod. Rep. , vol.28 , pp. 1381-1405
    • Pedras, M.S.C.1
  • 3
    • 84983633298 scopus 로고    scopus 로고
    • KNApSAcK: a comprehensive species-metabolite relationship database
    • Springer, K. Saito (Ed.)
    • Shinbo Y., et al. KNApSAcK: a comprehensive species-metabolite relationship database. Plant Metabolomics 2006, 165-181. Springer. K. Saito (Ed.).
    • (2006) Plant Metabolomics , pp. 165-181
    • Shinbo, Y.1
  • 4
    • 79955094902 scopus 로고    scopus 로고
    • Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize
    • Schmelz E.A., et al. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5455-5460.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 5455-5460
    • Schmelz, E.A.1
  • 5
    • 79961205348 scopus 로고    scopus 로고
    • Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize
    • Huffaker A., et al. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol. 2011, 156:2082-2097.
    • (2011) Plant Physiol. , vol.156 , pp. 2082-2097
    • Huffaker, A.1
  • 6
    • 0000758702 scopus 로고
    • Experimentelle Untersuchungen über die Phythophthora-Resistenz der Kartoffel. Zugleich ein Beitrag zum Problem der 'erworbenen Resistenz' im Pflanzenreich
    • Müller K.O., Börger H. Experimentelle Untersuchungen über die Phythophthora-Resistenz der Kartoffel. Zugleich ein Beitrag zum Problem der 'erworbenen Resistenz' im Pflanzenreich. Arbeiten der Biologischen Reichsanstalt für Land- und Forstwirtschaft 1940, 23:189-231.
    • (1940) Arbeiten der Biologischen Reichsanstalt für Land- und Forstwirtschaft , vol.23 , pp. 189-231
    • Müller, K.O.1    Börger, H.2
  • 7
    • 79951547359 scopus 로고    scopus 로고
    • An ABC transporter and a cytochrome P450 of Nectria haematococca MPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin
    • Coleman J.J., et al. An ABC transporter and a cytochrome P450 of Nectria haematococca MPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin. Mol. Plant Microbe Interact. 2011, 24:368-376.
    • (2011) Mol. Plant Microbe Interact. , vol.24 , pp. 368-376
    • Coleman, J.J.1
  • 8
    • 64549122842 scopus 로고    scopus 로고
    • Phytoalexin-enriched functional foods
    • Boue S.M., et al. Phytoalexin-enriched functional foods. J. Agric. Food Chem. 2009, 57:2614-2622.
    • (2009) J. Agric. Food Chem. , vol.57 , pp. 2614-2622
    • Boue, S.M.1
  • 9
    • 79954969719 scopus 로고    scopus 로고
    • Glyceollin, a soybean phytoalexin with medicinal properties
    • Ng T., et al. Glyceollin, a soybean phytoalexin with medicinal properties. Appl. Microbiol. Biotechnol. 2011, 90:59-68.
    • (2011) Appl. Microbiol. Biotechnol. , vol.90 , pp. 59-68
    • Ng, T.1
  • 10
    • 79961047423 scopus 로고    scopus 로고
    • Resveratrol and health - a comprehensive review of human clinical trials
    • Smoliga J.M., et al. Resveratrol and health - a comprehensive review of human clinical trials. Mol. Nutr. Food Res. 2011, 55:1129-1141.
    • (2011) Mol. Nutr. Food Res. , vol.55 , pp. 1129-1141
    • Smoliga, J.M.1
  • 12
    • 63049121674 scopus 로고    scopus 로고
    • Health-affecting compounds in Brassicaceae
    • Jahangir M., et al. Health-affecting compounds in Brassicaceae. Compr. Rev. Food. Sci. Food Saf. 2009, 8:31-43.
    • (2009) Compr. Rev. Food. Sci. Food Saf. , vol.8 , pp. 31-43
    • Jahangir, M.1
  • 13
    • 64549103387 scopus 로고    scopus 로고
    • Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties
    • Yang L., et al. Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J. Agric. Food Chem. 2009, 57:1797-1804.
    • (2009) J. Agric. Food Chem. , vol.57 , pp. 1797-1804
    • Yang, L.1
  • 14
    • 0025798952 scopus 로고
    • The camalexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae)
    • Browne L.M., et al. The camalexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron 1991, 47:3909-3914.
    • (1991) Tetrahedron , vol.47 , pp. 3909-3914
    • Browne, L.M.1
  • 15
    • 80054837618 scopus 로고    scopus 로고
    • Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives
    • Bednarek P., et al. Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. New Phytol. 2011, 192:713-726.
    • (2011) New Phytol. , vol.192 , pp. 713-726
    • Bednarek, P.1
  • 16
    • 39149106793 scopus 로고    scopus 로고
    • Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin
    • Pedras M.S.C., Adio A.M. Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin. Phytochemistry 2008, 69:889-893.
    • (2008) Phytochemistry , vol.69 , pp. 889-893
    • Pedras, M.S.C.1    Adio, A.M.2
  • 17
    • 33947515118 scopus 로고    scopus 로고
    • Phytotoxicity and innate immune responses induced by Nep1-like proteins
    • Qutob D., et al. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 2006, 18:3721-3744.
    • (2006) Plant Cell , vol.18 , pp. 3721-3744
    • Qutob, D.1
  • 18
    • 36148958240 scopus 로고    scopus 로고
    • Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis
    • Gust A.A., et al. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 2007, 282:32338-32348.
    • (2007) J. Biol. Chem. , vol.282 , pp. 32338-32348
    • Gust, A.A.1
  • 19
    • 49949085913 scopus 로고    scopus 로고
    • Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus
    • Qiu J.L., et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J. 2008, 27:2214-2221.
    • (2008) EMBO J. , vol.27 , pp. 2214-2221
    • Qiu, J.L.1
  • 20
    • 57749120092 scopus 로고    scopus 로고
    • Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings
    • Denoux C., et al. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant 2008, 1:423-445.
    • (2008) Mol. Plant , vol.1 , pp. 423-445
    • Denoux, C.1
  • 21
    • 80052037338 scopus 로고    scopus 로고
    • Transcript profiling of chitosan-treated Arabidopsis seedlings
    • Povero G., et al. Transcript profiling of chitosan-treated Arabidopsis seedlings. J. Plant Res. 2011, 124:619-629.
    • (2011) J. Plant Res. , vol.124 , pp. 619-629
    • Povero, G.1
  • 22
    • 34250621711 scopus 로고    scopus 로고
    • Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3
    • Ferrari S., et al. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 2007, 144:367-379.
    • (2007) Plant Physiol. , vol.144 , pp. 367-379
    • Ferrari, S.1
  • 23
    • 77953181003 scopus 로고    scopus 로고
    • Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns
    • Millet Y.A., et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010, 22:973-990.
    • (2010) Plant Cell , vol.22 , pp. 973-990
    • Millet, Y.A.1
  • 24
    • 80053635199 scopus 로고    scopus 로고
    • Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production
    • Schenke D., et al. Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ. 2011, 34:1849-1864.
    • (2011) Plant Cell Environ. , vol.34 , pp. 1849-1864
    • Schenke, D.1
  • 25
    • 33644863999 scopus 로고    scopus 로고
    • Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects
    • Bouizgarne B., et al. Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytol. 2006, 169:209-218.
    • (2006) New Phytol. , vol.169 , pp. 209-218
    • Bouizgarne, B.1
  • 26
    • 35548932873 scopus 로고    scopus 로고
    • Plant disease susceptibility conferred by a 'resistance' gene
    • Lorang J.M., et al. Plant disease susceptibility conferred by a 'resistance' gene. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14861-14866.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14861-14866
    • Lorang, J.M.1
  • 27
    • 33748993126 scopus 로고    scopus 로고
    • Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms
    • Raacke I.C., et al. Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms. Mol. Plant Microbe Interact. 2006, 19:1138-1146.
    • (2006) Mol. Plant Microbe Interact. , vol.19 , pp. 1138-1146
    • Raacke, I.C.1
  • 28
    • 0032029229 scopus 로고    scopus 로고
    • Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor
    • Zhao J.M., et al. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 1998, 10:359-370.
    • (1998) Plant Cell , vol.10 , pp. 359-370
    • Zhao, J.M.1
  • 29
    • 0036007973 scopus 로고    scopus 로고
    • Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds
    • Tierens K.F.M.J., et al. Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. Plant J. 2002, 29:131-140.
    • (2002) Plant J. , vol.29 , pp. 131-140
    • Tierens, K.F.M.J.1
  • 30
    • 32644486049 scopus 로고    scopus 로고
    • Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea
    • Kishimoto K., et al. Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci. 2006, 170:715-723.
    • (2006) Plant Sci. , vol.170 , pp. 715-723
    • Kishimoto, K.1
  • 31
    • 49249114940 scopus 로고    scopus 로고
    • Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection
    • Chassot C., et al. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J. 2008, 55:555-567.
    • (2008) Plant J. , vol.55 , pp. 555-567
    • Chassot, C.1
  • 32
    • 33644807824 scopus 로고    scopus 로고
    • Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity
    • Kliebenstein D.J., et al. Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J. 2005, 44:25-36.
    • (2005) Plant J. , vol.44 , pp. 25-36
    • Kliebenstein, D.J.1
  • 33
    • 34047095999 scopus 로고    scopus 로고
    • Regulatory variability of camalexin biosynthesis
    • Schuhegger R., et al. Regulatory variability of camalexin biosynthesis. J. Plant Physiol. 2007, 164:636-644.
    • (2007) J. Plant Physiol. , vol.164 , pp. 636-644
    • Schuhegger, R.1
  • 34
    • 18044371000 scopus 로고    scopus 로고
    • Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots
    • Bednarek P., et al. Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol. 2005, 138:1058-1070.
    • (2005) Plant Physiol. , vol.138 , pp. 1058-1070
    • Bednarek, P.1
  • 35
    • 2342477828 scopus 로고    scopus 로고
    • Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana
    • Denby K.J., et al. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J. 2004, 38:473-486.
    • (2004) Plant J. , vol.38 , pp. 473-486
    • Denby, K.J.1
  • 36
    • 0036856924 scopus 로고    scopus 로고
    • Arabidopsis ecotype variability in camalexin production and reaction to infection by Alternaria brassicicola
    • Kagan I.A., Hammerschmidt R. Arabidopsis ecotype variability in camalexin production and reaction to infection by Alternaria brassicicola. J. Chem. Ecol. 2002, 28:2121-2140.
    • (2002) J. Chem. Ecol. , vol.28 , pp. 2121-2140
    • Kagan, I.A.1    Hammerschmidt, R.2
  • 37
    • 33646851736 scopus 로고    scopus 로고
    • Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease
    • Staal J., et al. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 2006, 46:218-230.
    • (2006) Plant J. , vol.46 , pp. 218-230
    • Staal, J.1
  • 38
    • 35248829013 scopus 로고    scopus 로고
    • Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina
    • Shafiei R., et al. Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol. Plant Pathol. 2007, 8:773-784.
    • (2007) Mol. Plant Pathol. , vol.8 , pp. 773-784
    • Shafiei, R.1
  • 39
    • 2942673157 scopus 로고    scopus 로고
    • RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum
    • Narusaka Y., et al. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol. Plant Microbe Interact. 2004, 17:749-762.
    • (2004) Mol. Plant Microbe Interact. , vol.17 , pp. 749-762
    • Narusaka, Y.1
  • 40
    • 0038120846 scopus 로고    scopus 로고
    • Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling
    • van Wees S.C., et al. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol. 2003, 132:606-617.
    • (2003) Plant Physiol. , vol.132 , pp. 606-617
    • van Wees, S.C.1
  • 41
    • 0033167144 scopus 로고    scopus 로고
    • Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola
    • Thomma B.P.H.J., et al. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J. 1999, 19:163-171.
    • (1999) Plant J. , vol.19 , pp. 163-171
    • Thomma, B.P.H.J.1
  • 42
    • 77954065435 scopus 로고    scopus 로고
    • Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis
    • Rowe H.C., et al. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog. 2010, 6:e1000861.
    • (2010) PLoS Pathog. , vol.6
    • Rowe, H.C.1
  • 43
    • 0344390892 scopus 로고    scopus 로고
    • Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation
    • Nawrath C., Métraux J.P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 1999, 11:1393-1404.
    • (1999) Plant Cell , vol.11 , pp. 1393-1404
    • Nawrath, C.1    Métraux, J.P.2
  • 44
    • 0035174565 scopus 로고    scopus 로고
    • Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling
    • Roetschi A., et al. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 2001, 28:293-305.
    • (2001) Plant J. , vol.28 , pp. 293-305
    • Roetschi, A.1
  • 45
    • 14844325292 scopus 로고    scopus 로고
    • Ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways
    • Denby K.J., et al. ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways. Plant J. 2005, 41:673-684.
    • (2005) Plant J. , vol.41 , pp. 673-684
    • Denby, K.J.1
  • 46
    • 0344530993 scopus 로고    scopus 로고
    • Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction
    • Heck S., et al. Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. Plant J. 2003, 36:342-352.
    • (2003) Plant J. , vol.36 , pp. 342-352
    • Heck, S.1
  • 47
    • 44449106963 scopus 로고    scopus 로고
    • A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis
    • Ren D.T., et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:5638-5643.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 5638-5643
    • Ren, D.T.1
  • 48
    • 79960266065 scopus 로고    scopus 로고
    • The microRNA miR393 redirects secondary metabolite biosynthesis away from camalexin and towards glucosinolates
    • Robert-Seilaniantz A., et al. The microRNA miR393 redirects secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J. 2011, 67:218-231.
    • (2011) Plant J. , vol.67 , pp. 218-231
    • Robert-Seilaniantz, A.1
  • 49
    • 77955704591 scopus 로고    scopus 로고
    • Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner
    • Chaouch S., et al. Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiol. 2010, 153:1692-1705.
    • (2010) Plant Physiol. , vol.153 , pp. 1692-1705
    • Chaouch, S.1
  • 50
    • 55249124774 scopus 로고    scopus 로고
    • Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis
    • Xu J., et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 2008, 283:26996-27006.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26996-27006
    • Xu, J.1
  • 51
    • 79952299599 scopus 로고    scopus 로고
    • Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana
    • Su T., et al. Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 2011, 23:364-380.
    • (2011) Plant Cell , vol.23 , pp. 364-380
    • Su, T.1
  • 52
    • 70849099954 scopus 로고    scopus 로고
    • MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis
    • Bartels S., et al. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 2009, 21:2884-2897.
    • (2009) Plant Cell , vol.21 , pp. 2884-2897
    • Bartels, S.1
  • 53
    • 79957745760 scopus 로고    scopus 로고
    • Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis
    • Mao G., et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 2011, 23:1639-1653.
    • (2011) Plant Cell , vol.23 , pp. 1639-1653
    • Mao, G.1
  • 54
    • 78650148237 scopus 로고    scopus 로고
    • Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis
    • Pandey S.P., et al. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 2010, 64:912-923.
    • (2010) Plant J. , vol.64 , pp. 912-923
    • Pandey, S.P.1
  • 55
    • 34547701767 scopus 로고    scopus 로고
    • Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis
    • Nafisi M., et al. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 2007, 19:2039-2052.
    • (2007) Plant Cell , vol.19 , pp. 2039-2052
    • Nafisi, M.1
  • 56
    • 33846042529 scopus 로고    scopus 로고
    • Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control
    • van Baarlen P., et al. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 2007, 8:41-54.
    • (2007) Mol. Plant Pathol. , vol.8 , pp. 41-54
    • van Baarlen, P.1
  • 57
    • 77954303048 scopus 로고    scopus 로고
    • Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi
    • Sanchez-Vallet A., et al. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J. 2010, 63:115-127.
    • (2010) Plant J. , vol.63 , pp. 115-127
    • Sanchez-Vallet, A.1
  • 58
    • 0033388973 scopus 로고    scopus 로고
    • Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase
    • Zhou N., et al. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 1999, 11:2419-2428.
    • (1999) Plant Cell , vol.11 , pp. 2419-2428
    • Zhou, N.1
  • 59
    • 0030903161 scopus 로고    scopus 로고
    • Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance
    • Glazebrook J., et al. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 1997, 146:381-392.
    • (1997) Genetics , vol.146 , pp. 381-392
    • Glazebrook, J.1
  • 60
    • 77952869993 scopus 로고    scopus 로고
    • Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin
    • Schlaeppi K., et al. Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J. 2010, 62:840-851.
    • (2010) Plant J. , vol.62 , pp. 840-851
    • Schlaeppi, K.1
  • 61
    • 0346040191 scopus 로고    scopus 로고
    • Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling
    • Bohman S., et al. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 2004, 37:9-20.
    • (2004) Plant J. , vol.37 , pp. 9-20
    • Bohman, S.1
  • 62
    • 77949509105 scopus 로고    scopus 로고
    • Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant
    • Consonni C., et al. Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol. 2010, 152:1544-1561.
    • (2010) Plant Physiol. , vol.152 , pp. 1544-1561
    • Consonni, C.1
  • 63
    • 58149215723 scopus 로고    scopus 로고
    • A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense
    • Bednarek P., et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 2009, 323:101-106.
    • (2009) Science , vol.323 , pp. 101-106
    • Bednarek, P.1
  • 64
    • 33644888636 scopus 로고    scopus 로고
    • Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid
    • Pegadaraju V., et al. Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol. 2005, 139:1927-1934.
    • (2005) Plant Physiol. , vol.139 , pp. 1927-1934
    • Pegadaraju, V.1
  • 65
    • 49849083282 scopus 로고    scopus 로고
    • The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis
    • Schlaeppi K., et al. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 2008, 55:774-786.
    • (2008) Plant J. , vol.55 , pp. 774-786
    • Schlaeppi, K.1
  • 66
    • 46949085304 scopus 로고    scopus 로고
    • Towards global understanding of plant defence against aphids - timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack
    • Kusnierczyk A., et al. Towards global understanding of plant defence against aphids - timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ. 2008, 31:1097-1115.
    • (2008) Plant Cell Environ. , vol.31 , pp. 1097-1115
    • Kusnierczyk, A.1
  • 67
    • 0030297944 scopus 로고    scopus 로고
    • Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions
    • Rogers E.E., et al. Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. Mol. Plant Microbe Interact. 1996, 9:748-757.
    • (1996) Mol. Plant Microbe Interact. , vol.9 , pp. 748-757
    • Rogers, E.E.1
  • 68
    • 0009947627 scopus 로고    scopus 로고
    • Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani
    • Pedras M.S.C., Khan A.Q. Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani. Phytochemistry 2000, 53:59-69.
    • (2000) Phytochemistry , vol.53 , pp. 59-69
    • Pedras, M.S.C.1    Khan, A.Q.2
  • 69
    • 79959714867 scopus 로고    scopus 로고
    • Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum
    • Stotz H.U., et al. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J. 2011, 67:81-93.
    • (2011) Plant J. , vol.67 , pp. 81-93
    • Stotz, H.U.1
  • 70
    • 33947255227 scopus 로고    scopus 로고
    • In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae
    • Sellam A., et al. In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae. Plant Pathol. 2007, 56:296-301.
    • (2007) Plant Pathol. , vol.56 , pp. 296-301
    • Sellam, A.1
  • 71
    • 78650261958 scopus 로고    scopus 로고
    • Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins
    • Joubert A., et al. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell. Microbiol. 2011, 13:62-80.
    • (2011) Cell. Microbiol. , vol.13 , pp. 62-80
    • Joubert, A.1
  • 72
    • 33847224183 scopus 로고    scopus 로고
    • Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola
    • Sellam A., et al. Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola. Mol. Plant Pathol. 2007, 8:195-208.
    • (2007) Mol. Plant Pathol. , vol.8 , pp. 195-208
    • Sellam, A.1
  • 73
    • 79951810804 scopus 로고    scopus 로고
    • Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola
    • Joubert A., et al. Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Mol. Microbiol. 2011, 79:1305-1324.
    • (2011) Mol. Microbiol. , vol.79 , pp. 1305-1324
    • Joubert, A.1
  • 74
    • 80052309759 scopus 로고    scopus 로고
    • Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection
    • Shlezinger N., et al. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog. 2011, 7:e1002185.
    • (2011) PLoS Pathog. , vol.7
    • Shlezinger, N.1
  • 75
    • 66149190940 scopus 로고    scopus 로고
    • The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana
    • Stefanato F.L., et al. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J. 2009, 58:499-510.
    • (2009) Plant J. , vol.58 , pp. 499-510
    • Stefanato, F.L.1
  • 76
    • 78951493174 scopus 로고    scopus 로고
    • Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite
    • Pedras M.S.C., et al. Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite. Phytochemistry 2011, 72:199-206.
    • (2011) Phytochemistry , vol.72 , pp. 199-206
    • Pedras, M.S.C.1
  • 77
    • 0006354738 scopus 로고    scopus 로고
    • The phytoalexin camalexin is not metabolized by Phoma lingam, Alternaria brassicae, or phytopathogenic bacteria
    • Pedras M.S.C., et al. The phytoalexin camalexin is not metabolized by Phoma lingam, Alternaria brassicae, or phytopathogenic bacteria. Plant Sci. 1998, 139:1-8.
    • (1998) Plant Sci. , vol.139 , pp. 1-8
    • Pedras, M.S.C.1
  • 79
    • 79959206058 scopus 로고    scopus 로고
    • Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity
    • Simons R., et al. Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J. Agric. Food Chem. 2011, 59:6748-6758.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 6748-6758
    • Simons, R.1
  • 80
    • 67649470375 scopus 로고    scopus 로고
    • Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis
    • Jasinski M., et al. Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol. Biochem. 2009, 47:847-853.
    • (2009) Plant Physiol. Biochem. , vol.47 , pp. 847-853
    • Jasinski, M.1
  • 81
    • 0002331570 scopus 로고
    • Phytoalexins from the Leguminosae
    • Blackie, J.A. Bailey, J.W. Mansfield (Eds.)
    • Ingham J.L. Phytoalexins from the Leguminosae. Phytoalexins 1982, 21-80. Blackie. J.A. Bailey, J.W. Mansfield (Eds.).
    • (1982) Phytoalexins , pp. 21-80
    • Ingham, J.L.1
  • 82
    • 7744240782 scopus 로고    scopus 로고
    • The characterization of defense responses to fungal infection in alfalfa
    • Saunders J., O'Neill N. The characterization of defense responses to fungal infection in alfalfa. BioControl 2004, 49:715-728.
    • (2004) BioControl , vol.49 , pp. 715-728
    • Saunders, J.1    O'Neill, N.2
  • 83
    • 36749014563 scopus 로고    scopus 로고
    • Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula
    • Naoumkina M., et al. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:17909-17915.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 17909-17915
    • Naoumkina, M.1
  • 84
    • 80052364240 scopus 로고    scopus 로고
    • LC-ESI-MS characterisation of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae)
    • Arman M. LC-ESI-MS characterisation of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae). Nat. Prod. Res. 2011, 25:1352-1360.
    • (2011) Nat. Prod. Res. , vol.25 , pp. 1352-1360
    • Arman, M.1
  • 85
    • 33645106827 scopus 로고    scopus 로고
    • Studies on the late steps of (+) pisatin biosynthesis: Evidence for (-) enantiomeric intermediates
    • DiCenzo G.L., VanEtten H.D. Studies on the late steps of (+) pisatin biosynthesis: Evidence for (-) enantiomeric intermediates. Phytochemistry 2006, 67:675-683.
    • (2006) Phytochemistry , vol.67 , pp. 675-683
    • DiCenzo, G.L.1    VanEtten, H.D.2
  • 86
    • 78650109876 scopus 로고    scopus 로고
    • Identification of prenylated pterocarpans and other isoflavonoids in Rhizopus spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry
    • Simons R., et al. Identification of prenylated pterocarpans and other isoflavonoids in Rhizopus spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25:55-65.
    • (2011) Rapid Commun. Mass Spectrom. , vol.25 , pp. 55-65
    • Simons, R.1
  • 87
    • 70149108523 scopus 로고    scopus 로고
    • Differential metabolic response of narrow leaf lupine (Lupinus angustifolius) leaves to infection with Colletotrichum lupini
    • Muth D., et al. Differential metabolic response of narrow leaf lupine (Lupinus angustifolius) leaves to infection with Colletotrichum lupini. Metabolomics 2009, 5:354-362.
    • (2009) Metabolomics , vol.5 , pp. 354-362
    • Muth, D.1
  • 88
    • 79952146166 scopus 로고    scopus 로고
    • Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids
    • Sobolev V.S., et al. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids. J. Agric. Food Chem. 2011, 59:1673-1682.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 1673-1682
    • Sobolev, V.S.1
  • 89
    • 59849127956 scopus 로고    scopus 로고
    • New stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus caelatus strain
    • Sobolev V.S., et al. New stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus caelatus strain. J. Agric. Food Chem. 2009, 57:62-68.
    • (2009) J. Agric. Food Chem. , vol.57 , pp. 62-68
    • Sobolev, V.S.1
  • 90
    • 74849133102 scopus 로고    scopus 로고
    • New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogaea) seeds
    • Sobolev V.S., et al. New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogaea) seeds. J. Agric. Food Chem. 2010, 58:875-881.
    • (2010) J. Agric. Food Chem. , vol.58 , pp. 875-881
    • Sobolev, V.S.1
  • 91
    • 78249233568 scopus 로고    scopus 로고
    • Pterocarpenes elicited by Aspergillus caelatus in peanut (Arachis hypogaea) seeds
    • Sobolev V.S., et al. Pterocarpenes elicited by Aspergillus caelatus in peanut (Arachis hypogaea) seeds. Phytochemistry 2010, 71:2099-2107.
    • (2010) Phytochemistry , vol.71 , pp. 2099-2107
    • Sobolev, V.S.1
  • 92
    • 41849146437 scopus 로고    scopus 로고
    • Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species
    • Sobolev V.S. Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species. J. Agric. Food Chem. 2008, 56:1949-1954.
    • (2008) J. Agric. Food Chem. , vol.56 , pp. 1949-1954
    • Sobolev, V.S.1
  • 93
    • 33645772243 scopus 로고    scopus 로고
    • New peanut (Arachis hypogaea) phytoalexin with prenylated benzenoid and but-2-enolide moieties
    • Sobolev V.S., et al. New peanut (Arachis hypogaea) phytoalexin with prenylated benzenoid and but-2-enolide moieties. J. Agric. Food Chem. 2006, 54:2111-2115.
    • (2006) J. Agric. Food Chem. , vol.54 , pp. 2111-2115
    • Sobolev, V.S.1
  • 94
    • 38949123203 scopus 로고    scopus 로고
    • Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures
    • Farag M.A., et al. Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 2008, 146:387-402.
    • (2008) Plant Physiol. , vol.146 , pp. 387-402
    • Farag, M.A.1
  • 95
    • 2942677536 scopus 로고    scopus 로고
    • Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen
    • Wu Q., VanEtten H.D. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol. Plant Microbe Interact. 2004, 17:798-804.
    • (2004) Mol. Plant Microbe Interact. , vol.17 , pp. 798-804
    • Wu, Q.1    VanEtten, H.D.2
  • 96
    • 37249093613 scopus 로고    scopus 로고
    • Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin
    • Kaimoyo E., VanEtten H.D. Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin. Phytochemistry 2008, 69:76-87.
    • (2008) Phytochemistry , vol.69 , pp. 76-87
    • Kaimoyo, E.1    VanEtten, H.D.2
  • 97
    • 79958019652 scopus 로고    scopus 로고
    • Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants
    • Wu Z., et al. Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J. Agric. Food Chem. 2011, 59:5993-6003.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 5993-6003
    • Wu, Z.1
  • 98
    • 77956239423 scopus 로고    scopus 로고
    • Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses
    • Yang M.-H., et al. Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses. J. Agric. Food Chem. 2010, 58:9518-9522.
    • (2010) J. Agric. Food Chem. , vol.58 , pp. 9518-9522
    • Yang, M.-H.1
  • 99
    • 77953134836 scopus 로고    scopus 로고
    • Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage
    • Condori J., et al. Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol. Biochem. 2010, 48:310-318.
    • (2010) Plant Physiol. Biochem. , vol.48 , pp. 310-318
    • Condori, J.1
  • 100
    • 34447094020 scopus 로고    scopus 로고
    • Production and secretion of resveratrol in hairy root cultures of peanut
    • Medina-Bolivar F., et al. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 2007, 68:1992-2003.
    • (2007) Phytochemistry , vol.68 , pp. 1992-2003
    • Medina-Bolivar, F.1
  • 101
    • 4444384073 scopus 로고    scopus 로고
    • Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani
    • Lozovaya V., et al. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol. Biochem. 2004, 42:671-679.
    • (2004) Plant Physiol. Biochem. , vol.42 , pp. 671-679
    • Lozovaya, V.1
  • 102
    • 35548975785 scopus 로고    scopus 로고
    • Fungal-stressed germination of black soybeans leads to generation of oxooctadecadienoic acids in addition to glyceollins
    • Feng S., et al. Fungal-stressed germination of black soybeans leads to generation of oxooctadecadienoic acids in addition to glyceollins. J. Agric. Food Chem. 2007, 55:8589-8595.
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 8589-8595
    • Feng, S.1
  • 103
    • 34247387593 scopus 로고    scopus 로고
    • Activation of members of a MAPK module in β-glucan elicitor-mediated non-host resistance of soybean
    • Daxberger A., et al. Activation of members of a MAPK module in β-glucan elicitor-mediated non-host resistance of soybean. Planta 2007, 225:1559-1571.
    • (2007) Planta , vol.225 , pp. 1559-1571
    • Daxberger, A.1
  • 104
    • 34250630531 scopus 로고    scopus 로고
    • RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues
    • Graham T.L., et al. RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol. 2007, 144:728-740.
    • (2007) Plant Physiol. , vol.144 , pp. 728-740
    • Graham, T.L.1
  • 105
    • 60249101275 scopus 로고    scopus 로고
    • Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin
    • Akashi T., et al. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol. 2009, 149:683-693.
    • (2009) Plant Physiol. , vol.149 , pp. 683-693
    • Akashi, T.1
  • 106
    • 79958059306 scopus 로고    scopus 로고
    • GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes
    • Yamaguchi Y., et al. GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes. Plant Physiol. 2011, 156:932-942.
    • (2011) Plant Physiol. , vol.156 , pp. 932-942
    • Yamaguchi, Y.1
  • 107
    • 27244443126 scopus 로고    scopus 로고
    • MetaCyc and AraCyc. Metabolic pathway databases for plant research
    • Zhang P., et al. MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol. 2005, 138:27-37.
    • (2005) Plant Physiol. , vol.138 , pp. 27-37
    • Zhang, P.1
  • 108
    • 77955502149 scopus 로고    scopus 로고
    • Determination of capsidiol in tobacco cells culture by HPLC
    • Literakova P., et al. Determination of capsidiol in tobacco cells culture by HPLC. J. Chromatogr. Sci. 2010, 48:436-440.
    • (2010) J. Chromatogr. Sci. , vol.48 , pp. 436-440
    • Literakova, P.1
  • 109
    • 73349090260 scopus 로고    scopus 로고
    • The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen
    • El Oirdi M., et al. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. Environ. Microbiol. 2010, 12:239-253.
    • (2010) Environ. Microbiol. , vol.12 , pp. 239-253
    • El Oirdi, M.1
  • 110
    • 0036095324 scopus 로고    scopus 로고
    • Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants
    • Costet L., et al. Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants. Physiol. Plant. 2002, 115:228-235.
    • (2002) Physiol. Plant. , vol.115 , pp. 228-235
    • Costet, L.1
  • 111
    • 0041854345 scopus 로고    scopus 로고
    • Superoxide release is necessary for phytoalexin accumulation in Nicotiana tabacum cells during the expression of cultivar-race and non-host resistance towards Phytophthora spp
    • Perrone S.T., et al. Superoxide release is necessary for phytoalexin accumulation in Nicotiana tabacum cells during the expression of cultivar-race and non-host resistance towards Phytophthora spp. Physiol. Mol. Plant Pathol. 2003, 62:127-135.
    • (2003) Physiol. Mol. Plant Pathol. , vol.62 , pp. 127-135
    • Perrone, S.T.1
  • 112
    • 67650106982 scopus 로고    scopus 로고
    • Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco
    • Mialoundama A.S., et al. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol. 2009, 150:1556-1566.
    • (2009) Plant Physiol. , vol.150 , pp. 1556-1566
    • Mialoundama, A.S.1
  • 113
    • 34548688660 scopus 로고    scopus 로고
    • Capsidiol production in pepper fruits (Capsicum annuum L.) induced by arachidonic acid is dependent of an oxidative burst
    • Araceli A.-C., et al. Capsidiol production in pepper fruits (Capsicum annuum L.) induced by arachidonic acid is dependent of an oxidative burst. Physiol. Mol. Plant Pathol. 2007, 70:69-76.
    • (2007) Physiol. Mol. Plant Pathol. , vol.70 , pp. 69-76
    • Araceli, A.-C.1
  • 114
    • 41549162984 scopus 로고    scopus 로고
    • Cellulase elicitor induced accumulation of capsidiol in Capsicum annumm L. suspension cultures
    • Ma C. Cellulase elicitor induced accumulation of capsidiol in Capsicum annumm L. suspension cultures. Biotechnol. Lett. 2008, 30:961-965.
    • (2008) Biotechnol. Lett. , vol.30 , pp. 961-965
    • Ma, C.1
  • 115
    • 0037041904 scopus 로고    scopus 로고
    • Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism
    • Jeandet P., et al. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 2002, 50:2731-2741.
    • (2002) J. Agric. Food Chem. , vol.50 , pp. 2731-2741
    • Jeandet, P.1
  • 116
    • 31044437014 scopus 로고    scopus 로고
    • Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures
    • Bru R., et al. Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J. Agric. Food Chem. 2006, 54:65-71.
    • (2006) J. Agric. Food Chem. , vol.54 , pp. 65-71
    • Bru, R.1
  • 117
    • 79951677540 scopus 로고    scopus 로고
    • The effectiveness of stilbenes in resistant Vitaceae: ultrastructural and biochemical events during Plasmopara viticola infection process
    • Alonso-Villaverde V., et al. The effectiveness of stilbenes in resistant Vitaceae: ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiol. Biochem. 2011, 49:265-274.
    • (2011) Plant Physiol. Biochem. , vol.49 , pp. 265-274
    • Alonso-Villaverde, V.1
  • 118
    • 59349113770 scopus 로고    scopus 로고
    • Role of stilbenes in the resistance of grapevine to powdery mildew
    • Schnee S., et al. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol. Mol. Plant Pathol. 2008, 72:128-133.
    • (2008) Physiol. Mol. Plant Pathol. , vol.72 , pp. 128-133
    • Schnee, S.1
  • 119
    • 33846367081 scopus 로고    scopus 로고
    • The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells
    • Kiselev K., et al. The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J. Biotechnol. 2007, 128:681-692.
    • (2007) J. Biotechnol. , vol.128 , pp. 681-692
    • Kiselev, K.1
  • 120
    • 33748920974 scopus 로고    scopus 로고
    • Pharmacometrics of stilbenes: seguing towards the clinic
    • Roupe K.A., et al. Pharmacometrics of stilbenes: seguing towards the clinic. Curr. Clin. Pharmacol. 2011, 1:81-101.
    • (2011) Curr. Clin. Pharmacol. , vol.1 , pp. 81-101
    • Roupe, K.A.1
  • 121
    • 42149093787 scopus 로고    scopus 로고
    • Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures
    • Belhadj A., et al. Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol. Biochem. 2008, 46:493-499.
    • (2008) Plant Physiol. Biochem. , vol.46 , pp. 493-499
    • Belhadj, A.1
  • 122
    • 84873072437 scopus 로고    scopus 로고
    • Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate
    • Belchí-Navarro S., et al. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep. 2011, 1-9.
    • (2011) Plant Cell Rep. , pp. 1-9
    • Belchí-Navarro, S.1
  • 123
    • 70349583377 scopus 로고    scopus 로고
    • Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures
    • Lijavetzky D., et al. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res. Notes 2008, 1:132.
    • (2008) BMC Res. Notes , vol.1 , pp. 132
    • Lijavetzky, D.1
  • 124
    • 19344369890 scopus 로고    scopus 로고
    • Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures
    • Tassoni A., et al. Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol. 2005, 166:895-905.
    • (2005) New Phytol. , vol.166 , pp. 895-905
    • Tassoni, A.1
  • 125
    • 70449529651 scopus 로고    scopus 로고
    • Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors
    • Martinez-Esteso M.J., et al. Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J. Proteomics 2009, 73:331-341.
    • (2009) J. Proteomics , vol.73 , pp. 331-341
    • Martinez-Esteso, M.J.1
  • 126
    • 79960980736 scopus 로고    scopus 로고
    • DIGE analysis of proteome changes accompanying large resveratrol production by grapevine (Vitis vinifera cv. Gamay) cell cultures in response to methyl-[beta]-cyclodextrin and methyl jasmonate elicitors
    • Martinez-Esteso M.J., et al. DIGE analysis of proteome changes accompanying large resveratrol production by grapevine (Vitis vinifera cv. Gamay) cell cultures in response to methyl-[beta]-cyclodextrin and methyl jasmonate elicitors. J. Proteomics 2011, 74:1421-1436.
    • (2011) J. Proteomics , vol.74 , pp. 1421-1436
    • Martinez-Esteso, M.J.1
  • 127
    • 70349577933 scopus 로고    scopus 로고
    • Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor
    • Zamboni A., et al. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genomics 2009, 10:363.
    • (2009) BMC Genomics , vol.10 , pp. 363
    • Zamboni, A.1
  • 128
    • 70350003677 scopus 로고    scopus 로고
    • Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures
    • Faurie B., et al. Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J. Plant Physiol. 2009, 166:1863-1877.
    • (2009) J. Plant Physiol. , vol.166 , pp. 1863-1877
    • Faurie, B.1
  • 129
    • 38349165313 scopus 로고    scopus 로고
    • Potential for metabolic engineering of resveratrol biosynthesis
    • Halls C., Yu O. Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol. 2008, 26:77-81.
    • (2008) Trends Biotechnol. , vol.26 , pp. 77-81
    • Halls, C.1    Yu, O.2
  • 130
    • 57649135035 scopus 로고    scopus 로고
    • Molecular engineering of resveratrol in plants
    • Delaunois B., et al. Molecular engineering of resveratrol in plants. Plant Biotechnol. J. 2009, 7:2-12.
    • (2009) Plant Biotechnol. J. , vol.7 , pp. 2-12
    • Delaunois, B.1
  • 131
    • 34548364050 scopus 로고    scopus 로고
    • Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and Its derivatives in substantial quantities
    • Schwekendiek A., et al. Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and Its derivatives in substantial quantities. J. Agric. Food Chem. 2007, 55:7002-7009.
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 7002-7009
    • Schwekendiek, A.1
  • 132
    • 0027136412 scopus 로고
    • Avenanthramides: a group of phenolic antioxidants in oats
    • Dimberg L.H., et al. Avenanthramides: a group of phenolic antioxidants in oats. Cereal Chem. 1993, 70:637-641.
    • (1993) Cereal Chem. , vol.70 , pp. 637-641
    • Dimberg, L.H.1
  • 133
    • 79960073322 scopus 로고    scopus 로고
    • Effect of chemical systemic acquired resistance eicitors on avenanthramide biosynthesis in oat (Avena sativa)
    • Wise M.L. Effect of chemical systemic acquired resistance eicitors on avenanthramide biosynthesis in oat (Avena sativa). J. Agric. Food Chem. 2011, 59:7028-7038.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 7028-7038
    • Wise, M.L.1
  • 134
    • 0036130507 scopus 로고    scopus 로고
    • Induction of anthranilate synthase activity by elicitors in oats
    • Matsukawa T., et al. Induction of anthranilate synthase activity by elicitors in oats. Z. Naturforsch. 2002, 57c:121-128.
    • (2002) Z. Naturforsch. , vol.57 C , pp. 121-128
    • Matsukawa, T.1
  • 135
    • 4143123287 scopus 로고    scopus 로고
    • Metabolism of avenanthramide phytoalexins in oats
    • Okazaki Y., et al. Metabolism of avenanthramide phytoalexins in oats. Plant J. 2004, 39:560-572.
    • (2004) Plant J. , vol.39 , pp. 560-572
    • Okazaki, Y.1
  • 136
    • 28544437389 scopus 로고    scopus 로고
    • Victorin triggers programmed cell death and the defense response via interaction with a cell surface mediator
    • Tada Y., et al. Victorin triggers programmed cell death and the defense response via interaction with a cell surface mediator. Plant Cell Physiol. 2005, 46:1787-1798.
    • (2005) Plant Cell Physiol. , vol.46 , pp. 1787-1798
    • Tada, Y.1
  • 137
    • 61349190282 scopus 로고    scopus 로고
    • High-resolution spatial and temporal analysis of phytoalexin production in oats
    • Izumi Y., et al. High-resolution spatial and temporal analysis of phytoalexin production in oats. Planta 2009, 229:931-943.
    • (2009) Planta , vol.229 , pp. 931-943
    • Izumi, Y.1
  • 138
    • 1642465568 scopus 로고    scopus 로고
    • Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat
    • Yang Q., et al. Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol. Plant Microbe Interact. 2004, 17:81-89.
    • (2004) Mol. Plant Microbe Interact. , vol.17 , pp. 81-89
    • Yang, Q.1
  • 139
    • 79960807863 scopus 로고    scopus 로고
    • The biosynthesis of isoprenoids and the mechanisms regulating it in plants
    • Okada K. The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci. Biotechnol. Biochem. 2011, 75:1219-1225.
    • (2011) Biosci. Biotechnol. Biochem. , vol.75 , pp. 1219-1225
    • Okada, K.1
  • 140
    • 38949125479 scopus 로고    scopus 로고
    • Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells
    • Shimizu T., et al. Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochemistry 2008, 69:973-981.
    • (2008) Phytochemistry , vol.69 , pp. 973-981
    • Shimizu, T.1
  • 141
    • 70350366897 scopus 로고    scopus 로고
    • OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice
    • Okada A., et al. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J. Biol. Chem. 2009, 284:26510-26518.
    • (2009) J. Biol. Chem. , vol.284 , pp. 26510-26518
    • Okada, A.1
  • 142
    • 78649609189 scopus 로고    scopus 로고
    • Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice
    • Shimizu T., et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 2010, 64:204-214.
    • (2010) Plant J. , vol.64 , pp. 204-214
    • Shimizu, T.1
  • 143
    • 33745438286 scopus 로고    scopus 로고
    • Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice
    • Koga J., et al. Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. Plant Physiol. 2006, 140:1475-1483.
    • (2006) Plant Physiol. , vol.140 , pp. 1475-1483
    • Koga, J.1
  • 144
    • 36348964360 scopus 로고    scopus 로고
    • Identification of a biosynthetic gene cluster in rice for momilactones
    • Shimura K., et al. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 2007, 282:34013-34018.
    • (2007) J. Biol. Chem. , vol.282 , pp. 34013-34018
    • Shimura, K.1
  • 145
    • 34848919502 scopus 로고    scopus 로고
    • Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice
    • Okada A., et al. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol. Biol. 2007, 65:177-187.
    • (2007) Plant Mol. Biol. , vol.65 , pp. 177-187
    • Okada, A.1
  • 146
    • 33947150955 scopus 로고    scopus 로고
    • Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice
    • Mori M., et al. Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol. Biol. 2007, 63:847-860.
    • (2007) Plant Mol. Biol. , vol.63 , pp. 847-860
    • Mori, M.1
  • 147
    • 77955214713 scopus 로고    scopus 로고
    • Phytoalexin accumulation in the interaction between rice and the blast fungus
    • Hasegawa M., et al. Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol. Plant Microbe Interact. 2010, 23:1000-1011.
    • (2010) Mol. Plant Microbe Interact. , vol.23 , pp. 1000-1011
    • Hasegawa, M.1
  • 148
    • 77955697556 scopus 로고    scopus 로고
    • A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis
    • Kishi-Kaboshi M., et al. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J. 2010, 63:599-612.
    • (2010) Plant J. , vol.63 , pp. 599-612
    • Kishi-Kaboshi, M.1
  • 149
    • 77953189325 scopus 로고    scopus 로고
    • Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells
    • Kurusu T., et al. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol. 2010, 153:678-692.
    • (2010) Plant Physiol. , vol.153 , pp. 678-692
    • Kurusu, T.1
  • 150
    • 77955011990 scopus 로고    scopus 로고
    • Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum
    • Liu H., et al. Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant Cell Physiol. 2010, 51:1173-1185.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1173-1185
    • Liu, H.1
  • 151
    • 77649244513 scopus 로고    scopus 로고
    • Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum
    • Du Y., et al. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. J. Exp. Bot. 2010, 61:983-994.
    • (2010) J. Exp. Bot. , vol.61 , pp. 983-994
    • Du, Y.1
  • 152
    • 68049117343 scopus 로고    scopus 로고
    • Infection biology and defence responses in sorghum against Colletotrichum sublineolum
    • Basavaraju P., et al. Infection biology and defence responses in sorghum against Colletotrichum sublineolum. J. Appl. Microbiol. 2009, 107:404-415.
    • (2009) J. Appl. Microbiol. , vol.107 , pp. 404-415
    • Basavaraju, P.1
  • 153
    • 38949212991 scopus 로고    scopus 로고
    • Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress
    • Pedras M.S.C., et al. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry 2008, 69:894-910.
    • (2008) Phytochemistry , vol.69 , pp. 894-910
    • Pedras, M.S.C.1
  • 154
    • 62349125895 scopus 로고    scopus 로고
    • The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation
    • Pedras M.S.C., et al. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 2009, 70:394-402.
    • (2009) Phytochemistry , vol.70 , pp. 394-402
    • Pedras, M.S.C.1
  • 155
    • 78650179536 scopus 로고    scopus 로고
    • Molecular quantification of the pea footrot disease pathogen (Nectria haematococca) in agricultural soils
    • Etebu E., Osborn A.M. Molecular quantification of the pea footrot disease pathogen (Nectria haematococca) in agricultural soils. Phytoparasitica 2010, 38:447-454.
    • (2010) Phytoparasitica , vol.38 , pp. 447-454
    • Etebu, E.1    Osborn, A.M.2
  • 156
    • 77956788567 scopus 로고    scopus 로고
    • Response of soybean pathogens to glyceollin
    • Lygin A.V., et al. Response of soybean pathogens to glyceollin. Phytopathology 2010, 100:897-903.
    • (2010) Phytopathology , vol.100 , pp. 897-903
    • Lygin, A.V.1
  • 157
    • 77957074864 scopus 로고    scopus 로고
    • Induction of glyceollins by fungal infection in varieties of Korean soybean
    • Lee M.R., et al. Induction of glyceollins by fungal infection in varieties of Korean soybean. J. Microbiol. Biotechnol. 2010, 20:1226-1229.
    • (2010) J. Microbiol. Biotechnol. , vol.20 , pp. 1226-1229
    • Lee, M.R.1
  • 158
    • 81555209693 scopus 로고    scopus 로고
    • Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions
    • Timperio A.M., et al. Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiol. Biochem. 2012, 50:65-71.
    • (2012) Plant Physiol. Biochem. , vol.50 , pp. 65-71
    • Timperio, A.M.1
  • 159
    • 33645395563 scopus 로고    scopus 로고
    • Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.)
    • Zamboni A., et al. Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 2006, 45:63-68.
    • (2006) Vitis , vol.45 , pp. 63-68
    • Zamboni, A.1
  • 160
    • 0031081281 scopus 로고    scopus 로고
    • Differences in phytoalexin response among rice cultivars of different resistance to blast
    • Dillon V.M., et al. Differences in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry 1997, 44:599-603.
    • (1997) Phytochemistry , vol.44 , pp. 599-603
    • Dillon, V.M.1
  • 161
    • 78651345771 scopus 로고    scopus 로고
    • Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology
    • Fondevilla S., et al. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 2011, 12:28.
    • (2011) BMC Genomics , vol.12 , pp. 28
    • Fondevilla, S.1
  • 162
    • 2542513917 scopus 로고    scopus 로고
    • Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis
    • Glawischnig E., et al. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:8245-8250.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 8245-8250
    • Glawischnig, E.1
  • 163
    • 70349235411 scopus 로고    scopus 로고
    • The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana
    • Böttcher C., et al. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 2009, 21:1830-1845.
    • (2009) Plant Cell , vol.21 , pp. 1830-1845
    • Böttcher, C.1
  • 164
    • 79960850408 scopus 로고    scopus 로고
    • Cytosolic gamma-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in arabidopsis
    • Geu-Flores F., et al. Cytosolic gamma-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in arabidopsis. Plant Cell 2011, 23:2456-2469.
    • (2011) Plant Cell , vol.23 , pp. 2456-2469
    • Geu-Flores, F.1
  • 165
    • 33747148869 scopus 로고    scopus 로고
    • CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis
    • Schuhegger R., et al. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol. 2006, 141:1248-1254.
    • (2006) Plant Physiol. , vol.141 , pp. 1248-1254
    • Schuhegger, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.