메뉴 건너뛰기




Volumn 11, Issue 2, 2012, Pages 119-128

Protein kinase a contributes to the negative control of SNF1 protein kinase in saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC AMP DEPENDENT PROTEIN KINASE; GLUCOSE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; PROTEIN SERINE THREONINE KINASE; SNF1 RELATED PROTEIN KINASES; SNF1-RELATED PROTEIN KINASES;

EID: 84856669795     PISSN: 15359778     EISSN: None     Source Type: Journal    
DOI: 10.1128/EC.05061-11     Document Type: Article
Times cited : (51)

References (85)
  • 1
    • 33748746209 scopus 로고    scopus 로고
    • Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast
    • Asano S, et al. 2006. Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J. Biol. Chem. 281:27090- 27098.
    • (2006) J. Biol. Chem , vol.281 , pp. 27090-27098
    • Asano, S.1
  • 2
    • 34247511497 scopus 로고    scopus 로고
    • LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons
    • Barnes AP, et al. 2007. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129:549-563.
    • (2007) Cell , vol.129 , pp. 549-563
    • Barnes, A.P.1
  • 3
    • 0033555685 scopus 로고    scopus 로고
    • Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast
    • Barral Y, Parra M, Bidlingmaier S, Snyder M. 1999. Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev. 13:176-187.
    • (1999) Genes Dev , vol.13 , pp. 176-187
    • Barral, Y.1    Parra, M.2    Bidlingmaier, S.3    Snyder, M.4
  • 4
    • 0036148362 scopus 로고    scopus 로고
    • Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3
    • Bertram PG, et al. 2002. Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3. Mol. Cell. Biol. 22:1246-1252.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 1246-1252
    • Bertram, P.G.1
  • 5
    • 0027249418 scopus 로고
    • Regulation of dimorphism in Saccharomyces cerevisiae: Involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A
    • Blacketer MJ, Koehler CM, Coats SG, Myers AM, Madaule P. 1993. Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A. Mol. Cell. Biol. 13:5567-5581.
    • (1993) Mol. Cell. Biol , vol.13 , pp. 5567-5581
    • Blacketer, M.J.1    Koehler, C.M.2    Coats, S.G.3    Myers, A.M.4    Madaule, P.5
  • 6
    • 0026051160 scopus 로고
    • RAS genes in Saccharomyces cerevisiae: Signal transduction in search of a pathway
    • Broach JR. 1991. RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet. 7:28-33.
    • (1991) Trends Genet , vol.7 , pp. 28-33
    • Broach, J.R.1
  • 7
    • 34547114031 scopus 로고    scopus 로고
    • Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
    • Buzzai M, et al. 2007. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67:6745-6752.
    • (2007) Cancer Res , vol.67 , pp. 6745-6752
    • Buzzai, M.1
  • 8
    • 0028040192 scopus 로고
    • Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae
    • Cannon JF, Pringle JR, Fiechter A, Khalil M. 1994. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136: 485-503.
    • (1994) Genetics , vol.136 , pp. 485-503
    • Cannon, J.F.1    Pringle, J.R.2    Fiechter, A.3    Khalil, M.4
  • 9
    • 0023394967 scopus 로고
    • Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase
    • Cannon JF, Tatchell K. 1987. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 7:2653-2663.
    • (1987) Mol. Cell. Biol , vol.7 , pp. 2653-2663
    • Cannon, J.F.1    Tatchell, K.2
  • 10
    • 0019566797 scopus 로고
    • Mutants of yeast defective in sucrose utilization
    • Carlson M, Osmond BC, Botstein D. 1981. Mutants of yeast defective in sucrose utilization. Genetics 98:25-40.
    • (1981) Genetics , vol.98 , pp. 25-40
    • Carlson, M.1    Osmond, B.C.2    Botstein, D.3
  • 11
    • 0017396028 scopus 로고
    • Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression
    • Ciriacy M. 1977. Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol. Gen. Genet. 154:213-220.
    • (1977) Mol. Gen. Genet , vol.154 , pp. 213-220
    • Ciriacy, M.1
  • 12
    • 0034141636 scopus 로고    scopus 로고
    • LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phos-phorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo
    • Collins SP, Reoma JL, Gamm DM, Uhler MD. 2000. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phos-phorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem. J. 345:673-680.
    • (2000) Biochem. J , vol.345 , pp. 673-680
    • Collins, S.P.1    Reoma, J.L.2    Gamm, D.M.3    Uhler, M.D.4
  • 13
    • 75049085233 scopus 로고    scopus 로고
    • PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis
    • Djouder N, et al. 2010. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 29:469-481.
    • (2010) EMBO J , vol.29 , pp. 469-481
    • Djouder, N.1
  • 14
    • 62849094740 scopus 로고    scopus 로고
    • Uncoupling of the LKB1-AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF
    • e4771
    • Esteve-Puig R, Canals F, Colome N, Merlino G, Recio JA. 2009. Uncoupling of the LKB1-AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF. PLoS One 4:e4771.
    • (2009) PLoS One , vol.4
    • Esteve-Puig, R.1    Canals, F.2    Colome, N.3    Merlino, G.4    Recio, J.A.5
  • 15
    • 75349099919 scopus 로고    scopus 로고
    • Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer
    • Fogarty S, Hardie DG. 2010. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804:581-591.
    • (2010) Biochim. Biophys. Acta , pp. 581-591
    • Fogarty, S.1    Hardie, D.G.2
  • 16
    • 0033369715 scopus 로고    scopus 로고
    • Characterization of Saccharomyces cerevisiae strains expressing ira1 mutant alleles modeled after disease-causing mutations inNF1
    • Gil R, Seeling JM. 1999. Characterization of Saccharomyces cerevisiae strains expressing ira1 mutant alleles modeled after disease-causing mutations inNF1. Mol. Cell. Biochem. 202:109-118.
    • (1999) Mol. Cell. Biochem , vol.202 , pp. 109-118
    • Gil, R.1    Seeling, J.M.2
  • 18
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214-226.
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 19
    • 1642276329 scopus 로고    scopus 로고
    • Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast
    • Halme A, Bumgarner S, Styles C, Fink GR. 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405-415.
    • (2004) Cell , vol.116 , pp. 405-415
    • Halme, A.1    Bumgarner, S.2    Styles, C.3    Fink, G.R.4
  • 20
    • 0035984604 scopus 로고    scopus 로고
    • The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits
    • Harashima T, Heitman J. 2002. The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits. Mol. Cell 10:163-173.
    • (2002) Mol. Cell , vol.10 , pp. 163-173
    • Harashima, T.1    Heitman, J.2
  • 21
    • 33847072201 scopus 로고    scopus 로고
    • AMP-activated protein kinase as a drug target
    • Hardie DG. 2007. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47:185-210.
    • (2007) Annu. Rev. Pharmacol. Toxicol , vol.47 , pp. 185-210
    • Hardie, D.G.1
  • 22
    • 34648828532 scopus 로고    scopus 로고
    • AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
    • Hardie DG. 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8:774-785.
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 774-785
    • Hardie, D.G.1
  • 23
    • 35548955049 scopus 로고    scopus 로고
    • AMPK and SNF1: Snuffing out stress
    • Hardie DG. 2007. AMPK and SNF1: snuffing out stress. Cell Metab. 6:339-340.
    • (2007) Cell Metab , vol.6 , pp. 339-340
    • Hardie, D.G.1
  • 24
    • 0345107247 scopus 로고    scopus 로고
    • Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
    • Hawley SA, et al. 2003. Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2:28.
    • (2003) J. Biol , vol.2 , pp. 28
    • Hawley, S.A.1
  • 25
    • 23044432463 scopus 로고    scopus 로고
    • Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
    • Hawley SA, et al. 2005. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2:9-19.
    • (2005) Cell Metab , vol.2 , pp. 9-19
    • Hawley, S.A.1
  • 26
    • 38449110592 scopus 로고    scopus 로고
    • SNF1/AMPK pathways in yeast
    • Hedbacker K, Carlson M. 2008. SNF1/AMPK pathways in yeast. Front. Biosci. 13:2408-2420.
    • (2008) Front. Biosci , vol.13 , pp. 2408-2420
    • Hedbacker, K.1    Carlson, M.2
  • 27
    • 4444311163 scopus 로고    scopus 로고
    • Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase
    • Hedbacker K, Hong SP, Carlson M. 2004. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol. Cell. Biol. 24:8255-8263.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 8255-8263
    • Hedbacker, K.1    Hong, S.P.2    Carlson, M.3
  • 28
    • 1342282918 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase
    • Hedbacker K, Townley R, Carlson M. 2004. Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase. Mol. Cell. Biol. 24:1836-1843.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 1836-1843
    • Hedbacker, K.1    Townley, R.2    Carlson, M.3
  • 29
    • 34447128162 scopus 로고    scopus 로고
    • Regulation of snf1 protein kinase in response to environmental stress
    • Hong SP, Carlson M. 2007. Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282:16838-16845.
    • (2007) J. Biol. Chem , vol.282 , pp. 16838-16845
    • Hong, S.P.1    Carlson, M.2
  • 31
    • 20444468520 scopus 로고    scopus 로고
    • Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase {alpha} as Snf1-activating kinases in yeast
    • Hong SP, Momcilovic M, Carlson M. 2005. Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase {alpha} as Snf1-activating kinases in yeast. J. Biol. Chem. 280:21804-21809.
    • (2005) J. Biol. Chem , vol.280 , pp. 21804-21809
    • Hong, S.P.1    Momcilovic, M.2    Carlson, M.3
  • 32
    • 23844471263 scopus 로고    scopus 로고
    • The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
    • Hurley RL, et al. 2005. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280: 29060-29066.
    • (2005) J. Biol. Chem , vol.280 , pp. 29060-29066
    • Hurley, R.L.1
  • 33
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 34
    • 0030953974 scopus 로고    scopus 로고
    • The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex
    • Jiang R, Carlson M. 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099-2106.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 2099-2106
    • Jiang, R.1    Carlson, M.2
  • 35
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones RG, et al. 2005. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18:283-293.
    • (2005) Mol. Cell , vol.18 , pp. 283-293
    • Jones, R.G.1
  • 36
    • 0029828138 scopus 로고    scopus 로고
    • Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharo-myces cerevisiae
    • Kartasheva NN, Kuchin SV, Benevolensky SV. 1996. Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharo-myces cerevisiae. Yeast 12:1297-1300.
    • (1996) Yeast , vol.12 , pp. 1297-1300
    • Kartasheva, N.N.1    Kuchin, S.V.2    Benevolensky, S.V.3
  • 37
    • 0026040191 scopus 로고
    • Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases
    • Kennelly PJ, Krebs EG. 1991. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266:15555-15558.
    • (1991) J. Biol. Chem , vol.266 , pp. 15555-15558
    • Kennelly, P.J.1    Krebs, E.G.2
  • 38
    • 0031886049 scopus 로고    scopus 로고
    • Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1
    • Kuchin S, Carlson M. 1998. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol. Cell. Biol. 18:1163-1171.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 1163-1171
    • Kuchin, S.1    Carlson, M.2
  • 39
    • 0034608811 scopus 로고    scopus 로고
    • A regulatory shortcut between the Snf1 protein kinase and RNA polymeraseIIholoenzyme
    • Kuchin S, Treich I, Carlson M. 2000. A regulatory shortcut between the Snf1 protein kinase and RNA polymeraseIIholoenzyme. Proc. Natl. Acad. Sci. U. S. A. 97:7916-7920.
    • (2000) Proc. Natl. Acad. Sci. U. S. A , vol.97 , pp. 7916-7920
    • Kuchin, S.1    Treich, I.2    Carlson, M.3
  • 40
    • 0036265376 scopus 로고    scopus 로고
    • Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
    • Kuchin S, Vyas VK, Carlson M. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:3994-4000.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 3994-4000
    • Kuchin, S.1    Vyas, V.K.2    Carlson, M.3
  • 41
    • 0037326435 scopus 로고    scopus 로고
    • Role of the yeast Snf1 protein kinase in invasive growth
    • Kuchin S, Vyas VK, Carlson M. 2003. Role of the yeast Snf1 protein kinase in invasive growth. Biochem. Soc. Trans. 31:175-177.
    • (2003) Biochem. Soc. Trans , vol.31 , pp. 175-177
    • Kuchin, S.1    Vyas, V.K.2    Carlson, M.3
  • 42
    • 0037295532 scopus 로고    scopus 로고
    • Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae
    • Kuchin S, Vyas VK, Kanter E, Hong SP, Carlson M. 2003. Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae. Genetics 163:507-514.
    • (2003) Genetics , vol.163 , pp. 507-514
    • Kuchin, S.1    Vyas, V.K.2    Kanter, E.3    Hong, S.P.4    Carlson, M.5
  • 43
    • 0027178070 scopus 로고
    • Genes required for derepression of an extracellular glucoamylase gene, STA2, in the yeast Saccharomyces
    • Kuchin SV, Kartasheva NN, Benevolensky SV. 1993. Genes required for derepression of an extracellular glucoamylase gene, STA2, in the yeast Saccharomyces. Yeast 9:533-541.
    • (1993) Yeast , vol.9 , pp. 533-541
    • Kuchin, S.V.1    Kartasheva, N.N.2    Benevolensky, S.V.3
  • 44
    • 79952294333 scopus 로고    scopus 로고
    • Interaction of SNF1 protein kinase with its activating
    • Liu Y, Xu X, Carlson M. 2011. Interaction of SNF1 protein kinase with its activating kinase Sak1. Eukaryot. Cell 10:313-319.
    • (2011) Kinase Sak1. Eukaryot. Cell , vol.10 , pp. 313-319
    • Liu, Y.1    Xu, X.2    Carlson, M.3
  • 45
    • 0033967762 scopus 로고    scopus 로고
    • The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae
    • Lorenz MC, et al. 2000. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154:609-622.
    • (2000) Genetics , vol.154 , pp. 609-622
    • Lorenz, M.C.1
  • 46
    • 21344472380 scopus 로고    scopus 로고
    • Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases
    • McCartney RR, Rubenstein EM, Schmidt MC. 2005. Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr. Genet. 47:335-344.
    • (2005) Curr. Genet , vol.47 , pp. 335-344
    • McCartney, R.R.1    Rubenstein, E.M.2    Schmidt, M.C.3
  • 47
    • 0035965277 scopus 로고    scopus 로고
    • Regulation of Snf1 kinase.Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
    • McCartney RR, Schmidt MC. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276:36460- 36466.
    • (2001) J. Biol. Chem , vol.276 , pp. 36460-36466
    • McCartney, R.R.1    Schmidt, M.C.2
  • 48
    • 33748747706 scopus 로고    scopus 로고
    • Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro
    • Momcilovic M, Hong SP, Carlson M. 2006. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem. 281:25336-25343.
    • (2006) J. Biol. Chem , vol.281 , pp. 25336-25343
    • Momcilovic, M.1    Hong, S.P.2    Carlson, M.3
  • 49
    • 0037184937 scopus 로고    scopus 로고
    • Purification and characterization of Snf1 kinase complexes containing a defined Beta subunit composition
    • Nath N, McCartney RR, Schmidt MC. 2002. Purification and characterization of Snf1 kinase complexes containing a defined Beta subunit composition. J. Biol. Chem. 277:50403-50408.
    • (2002) J. Biol. Chem , vol.277 , pp. 50403-50408
    • Nath, N.1    McCartney, R.R.2    Schmidt, M.C.3
  • 50
    • 0038583957 scopus 로고    scopus 로고
    • Yeast Pak1 kinase associates with and activates Snf1
    • Nath N, McCartney RR, Schmidt MC. 2003. Yeast Pak1 kinase associates with and activates Snf1. Mol. Cell. Biol. 23:3909-3917.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 3909-3917
    • Nath, N.1    McCartney, R.R.2    Schmidt, M.C.3
  • 51
    • 56649106338 scopus 로고    scopus 로고
    • Detection of endogenous Snf1 and its activation state: Application to Saccharomyces and Candida species
    • Orlova M, Barrett L, Kuchin S. 2008. Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast 25:745-754.
    • (2008) Yeast , vol.25 , pp. 745-754
    • Orlova, M.1    Barrett, L.2    Kuchin, S.3
  • 52
    • 33751191872 scopus 로고    scopus 로고
    • Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae
    • Orlova M, Kanter E, Krakovich D, Kuchin S. 2006. Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot. Cell 5:1831-1837.
    • (2006) Eukaryot. Cell , vol.5 , pp. 1831-1837
    • Orlova, M.1    Kanter, E.2    Krakovich, D.3    Kuchin, S.4
  • 53
    • 75649116458 scopus 로고    scopus 로고
    • Roles of the Snf1-activating kinases during nitrogen limitation and pseudohyphal differentiation in Saccharomyces cerevisiae
    • Orlova M, Ozcetin H, Barrett L, Kuchin S. 2010. Roles of the Snf1-activating kinases during nitrogen limitation and pseudohyphal differentiation in Saccharomyces cerevisiae. Eukaryot. Cell 9:208-214.
    • (2010) Eukaryot. Cell , vol.9 , pp. 208-214
    • Orlova, M.1    Ozcetin, H.2    Barrett, L.3    Kuchin, S.4
  • 54
    • 0031016249 scopus 로고    scopus 로고
    • Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose
    • Ozcan S, Vallier LG, Flick JS, Carlson M, Johnston M. 1997. Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose. Yeast 13:127-137.
    • (1997) Yeast , vol.13 , pp. 127-137
    • Ozcan, S.1    Vallier, L.G.2    Flick, J.S.3    Carlson, M.4    Johnston, M.5
  • 55
    • 0344690152 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiationin Saccharomyces cerevisiae
    • Pan X, Heitman J. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiationin Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4874-4887.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 4874-4887
    • Pan, X.1    Heitman, J.2
  • 57
    • 33646239595 scopus 로고    scopus 로고
    • Regulatory domains of Snf1-activating kinases determine pathway specificity
    • Rubenstein EM, McCartney RR, Schmidt MC. 2006. Regulatory domains of Snf1-activating kinases determine pathway specificity. Eukaryot. Cell 5:620-627.
    • (2006) Eukaryot. Cell , vol.5 , pp. 620-627
    • Rubenstein, E.M.1    McCartney, R.R.2    Schmidt, M.C.3
  • 59
    • 79955588701 scopus 로고    scopus 로고
    • Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase
    • Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc. Natl. Acad. Sci. U. S. A. 108:6349-6354.
    • Proc. Natl. Acad. Sci. U. S. A , vol.108 , pp. 6349-6354
  • 60
    • 33645130011 scopus 로고    scopus 로고
    • Glucose signaling in Saccharomyces cerevisiae
    • Santangelo GM. 2006. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70:253-282.
    • (2006) Microbiol. Mol. Biol. Rev , vol.70 , pp. 253-282
    • Santangelo, G.M.1
  • 61
    • 0347624594 scopus 로고    scopus 로고
    • Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast
    • Schmelzle T, Beck T, Martin DE, Hall MN. 2004. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol. Cell. Biol. 24:338-351.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 338-351
    • Schmelzle, T.1    Beck, T.2    Martin, D.E.3    Hall, M.N.4
  • 62
    • 0035413602 scopus 로고    scopus 로고
    • Physiological substrates of cAMP-dependent protein kinase
    • Shabb JB. 2001. Physiological substrates of cAMP-dependent protein kinase. Chem. Rev. 101:2381-2411.
    • (2001) Chem. Rev , vol.101 , pp. 2381-2411
    • Shabb, J.B.1
  • 63
    • 34247478454 scopus 로고    scopus 로고
    • LKB1/ STRAD promotes axon initiation during neuronal polarization
    • Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM. 2007. LKB1/ STRAD promotes axon initiation during neuronal polarization. Cell 129: 565-577.
    • (2007) Cell , vol.129 , pp. 565-577
    • Shelly, M.1    Cancedda, L.2    Heilshorn, S.3    Sumbre, G.4    Poo, M.M.5
  • 64
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 65
    • 0032722596 scopus 로고    scopus 로고
    • The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response
    • Stanhill A, Schick N, Engelberg D. 1999. The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol. Cell. Biol. 19:7529-7538.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 7529-7538
    • Stanhill, A.1    Schick, N.2    Engelberg, D.3
  • 66
    • 78649741577 scopus 로고    scopus 로고
    • Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources
    • Strudwick N, Brown M, Parmar VM, Schroder M. 2010. Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Mol. Cell. Biol. 30:5514-5530.
    • (2010) Mol. Cell. Biol , vol.30 , pp. 5514-5530
    • Strudwick, N.1    Brown, M.2    Parmar, V.M.3    Schroder, M.4
  • 67
    • 0041700137 scopus 로고    scopus 로고
    • Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
    • Sutherland CM, et al. 2003. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13:1299-1305.
    • (2003) Curr. Biol , vol.13 , pp. 1299-1305
    • Sutherland, C.M.1
  • 69
    • 0025232840 scopus 로고
    • Scerevisiae genes IRA1 and IRA2 encode proteins that maybe functionally equivalent to mammalian ras GTPase activating protein
    • Tanaka K, et al. 1990. Scerevisiae genes IRA1 and IRA2 encode proteins that maybe functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803-807.
    • (1990) Cell , vol.60 , pp. 803-807
    • Tanaka, K.1
  • 70
    • 0025283632 scopus 로고
    • IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein
    • Tanaka K, et al. 1990. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol. Cell. Biol. 10:4303-4313.
    • (1990) Mol. Cell. Biol , vol.10 , pp. 4303-4313
    • Tanaka, K.1
  • 71
    • 0026054752 scopus 로고
    • Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway
    • Thompson-Jaeger S, Francois J, Gaughran JP, Tatchell K. 1991. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129:697-706.
    • (1991) Genetics , vol.129 , pp. 697-706
    • Thompson-Jaeger, S.1    Francois, J.2    Gaughran, J.P.3    Tatchell, K.4
  • 72
    • 0023130013 scopus 로고
    • Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae
    • Toda T, et al. 1987. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1371-1377.
    • (1987) Mol. Cell. Biol , vol.7 , pp. 1371-1377
    • Toda, T.1
  • 73
    • 0023658335 scopus 로고
    • Three different genes in S.cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase
    • Toda T, Cameron S, Sass P, Zoller M, Wigler M. 1987. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277-287.
    • (1987) Cell , vol.50 , pp. 277-287
    • Toda, T.1    Cameron, S.2    Sass, P.3    Zoller, M.4    Wigler, M.5
  • 74
    • 0021967321 scopus 로고
    • In yeast, RAS proteins are controlling elements of adenylate cyclase
    • Toda T, et al. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27-36.
    • (1985) Cell , vol.40 , pp. 27-36
    • Toda, T.1
  • 75
    • 0031740335 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
    • Treitel MA, Kuchin S, Carlson M. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273-6280.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 6273-6280
    • Treitel, M.A.1    Kuchin, S.2    Carlson, M.3
  • 76
    • 0028102286 scopus 로고
    • The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae
    • Tu J, Carlson M. 1994. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 6789-6796.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 6789-6796
    • Tu, J.1    Carlson, M.2
  • 77
    • 0028894928 scopus 로고
    • REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae
    • Tu J, Carlson M. 1995. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14: 5939-5946.
    • (1995) EMBO J , vol.14 , pp. 5939-5946
    • Tu, J.1    Carlson, M.2
  • 78
    • 23044437445 scopus 로고    scopus 로고
    • Ca2+/calmodulin-dependent protein kinase kinase-betaacts upstream of AMP-activated protein kinase in mammalian cells
    • Woods A, et al. 2005. Ca2+/calmodulin-dependent protein kinase kinase-betaacts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21-33.
    • (2005) Cell Metab , vol.2 , pp. 21-33
    • Woods, A.1
  • 79
    • 10744230065 scopus 로고    scopus 로고
    • LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
    • Woods A, et al. 2003. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13:2004-2008.
    • (2003) Curr. Biol , vol.13 , pp. 2004-2008
    • Woods, A.1
  • 80
    • 0025244911 scopus 로고
    • The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S
    • Xu GF, et al. 1990. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. Cerevisiae. Cell 63:835-841.
    • (1990) Cerevisiae. Cell , vol.63 , pp. 835-841
    • Xu, G.F.1
  • 81
    • 0028559507 scopus 로고
    • A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex
    • Yang X, Jiang R, Carlson M. 1994. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J. 13:5878-5886.
    • (1994) EMBO J , vol.13 , pp. 5878-5886
    • Yang, X.1    Jiang, R.2    Carlson, M.3
  • 82
    • 60749127330 scopus 로고    scopus 로고
    • Glucose regulates transcription in yeast through a network of signaling pathways
    • Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR. 2009. Glucose regulates transcription in yeast through a network of signaling pathways. Mol. Syst. Biol. 5:245.
    • (2009) Mol. Syst. Biol , vol.5 , pp. 245
    • Zaman, S.1    Lippman, S.I.2    Schneper, L.3    Slonim, N.4    Broach, J.R.5
  • 84
    • 77952888481 scopus 로고    scopus 로고
    • Systems biology of energy homeostasis in yeast
    • Zhang J, Vemuri G, Nielsen J. 2010. Systems biology of energy homeostasis in yeast. Curr. Opin. Microbiol. 13:382-388.
    • (2010) Curr. Opin. Microbiol , vol.13 , pp. 382-388
    • Zhang, J.1    Vemuri, G.2    Nielsen, J.3
  • 85
    • 0017581540 scopus 로고
    • Genetics of carbon catabolite repression in Saccharomycess cerevisiae: Genes involved in the derepression process
    • Zimmermann FK, Kaufmann I, Rasenberger H, Haubetamann P. 1977. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. Mol. Gen. Genet. 151:95-103.
    • (1977) Mol. Gen. Genet , vol.151 , pp. 95-103
    • Zimmermann, F.K.1    Kaufmann, I.2    Rasenberger, H.3    Haubetamann, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.