-
1
-
-
0033561886
-
Independent factor analysis
-
H. Attias. Independent factor analysis. Neur. Comp., 11:803-851, 1999.
-
(1999)
Neur. Comp.
, vol.11
, pp. 803-851
-
-
Attias, H.1
-
3
-
-
0000732463
-
A limited memory algorithm for bound constrained optimization
-
R. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. and Statist. Comp., 16(5):1190-1208, 1995.
-
(1995)
SIAM J. Sci. and Statist. Comp.
, vol.16
, Issue.5
, pp. 1190-1208
-
-
Byrd, R.1
Lu, P.2
Nocedal, J.3
-
4
-
-
29144439194
-
Decoding by linear programming
-
Dec.
-
E. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Inf. Theory, 51(12):4203-4215, Dec. 2005.
-
(2005)
IEEE Trans. Inf. Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candes, E.1
Tao, T.2
-
5
-
-
85032751046
-
Sparse signal recovery and acquisition with graphical models
-
Nov.
-
V. Cevher, P. Indyk, L. Carin, and R. Baraniuk. Sparse signal recovery and acquisition with graphical models. IEEE Signal Process. Mag., 27(6):92-103, Nov. 2010.
-
(2010)
IEEE Signal Process. Mag.
, vol.27
, Issue.6
, pp. 92-103
-
-
Cevher, V.1
Indyk, P.2
Carin, L.3
Baraniuk, R.4
-
6
-
-
0028416938
-
Independent component analysis a new concept?
-
P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, 1994.
-
(1994)
Signal Processing
, vol.36
, Issue.3
, pp. 287-314
-
-
Comon, P.1
-
7
-
-
33644754072
-
Likelihoodbased estimation for GaussianMRFs
-
N. Cressie, O. Perrin, and C. Thomas-Agnan. Likelihoodbased estimation for GaussianMRFs. Stat. Meth., 2(1):1-16, 2005.
-
(2005)
Stat. Meth.
, vol.2
, Issue.1
, pp. 1-16
-
-
Cressie, N.1
Perrin, O.2
Thomas-Agnan, C.3
-
8
-
-
33645712892
-
Compressed sensing
-
Apr.
-
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289-1306, Apr. 2006.
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
-
9
-
-
77954018368
-
Removing camera shake from a single photograph
-
R. Fergus, B. Singh, A. Hertzmann, S. Roweis, and W. Freeman. Removing camera shake from a single photograph. Proc. SIGGRAPH, 25(3):787-794, 2006.
-
(2006)
Proc. SIGGRAPH
, vol.25
, Issue.3
, pp. 787-794
-
-
Fergus, R.1
Singh, B.2
Hertzmann, A.3
Roweis, S.4
Freeman, W.5
-
10
-
-
0038132749
-
A variational method for learning sparse and overcomplete representations
-
M. Girolami. A variational method for learning sparse and overcomplete representations. Neur. Comp., 13:2517-2532, 2001.
-
(2001)
Neur. Comp.
, vol.13
, pp. 2517-2532
-
-
Girolami, M.1
-
12
-
-
51949095670
-
Deblurring images: Matrices, spectra, and filtering
-
P. Hansen, J. Nagy, and D. O'Leary. Deblurring images: matrices, spectra, and filtering. SIAM, 2006.
-
(2006)
SIAM
-
-
Hansen, P.1
Nagy, J.2
O'Leary, D.3
-
14
-
-
44849087307
-
Bayesian compressive sensing
-
June
-
S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Trans. Signal Process., 56(6):2346-2356, June 2008.
-
(2008)
IEEE Trans. Signal Process
, vol.56
, Issue.6
, pp. 2346-2356
-
-
Ji, S.1
Xue, Y.2
Carin, L.3
-
15
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. Jordan, J. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, J.2
Jaakkola, T.3
Saul, L.4
-
16
-
-
84856679324
-
Hessianbased norm regularization for image restoration with biomedical applications
-
to appear
-
S. Lefkimmiatis, A. Bourquard, and M. Unser. Hessianbased norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process., 2012. to appear.
-
(2012)
IEEE Trans. Image Process
-
-
Lefkimmiatis, S.1
Bourquard, A.2
Unser, M.3
-
17
-
-
70450174344
-
Understanding and evaluating blind deconvolution algorithms
-
A. Levin, Y. Weiss, F. Durand, andW. Freeman. Understanding and evaluating blind deconvolution algorithms. In Proc. CVPR, pages 1964-1971, 2009.
-
(2009)
Proc. CVPR
, pp. 1964-1971
-
-
Levin, A.1
Weiss, Y.2
Durand, F.3
Freeman, W.4
-
18
-
-
80052887928
-
Efficient marginal likelihood optimization in blind deconvolution
-
A. Levin, Y. Weiss, F. Durand, and W. Freeman. Efficient marginal likelihood optimization in blind deconvolution. In Proc. CVPR, pages 2657-2664, 2011.
-
(2011)
Proc. CVPR
, pp. 2657-2664
-
-
Levin, A.1
Weiss, Y.2
Durand, F.3
Freeman, W.4
-
19
-
-
0034133184
-
Learning overcomplete representations
-
M. Lewicki and T. Sejnowski. Learning overcomplete representations. Neur. Comp., 12:337-365, 2000.
-
(2000)
Neur. Comp.
, vol.12
, pp. 337-365
-
-
Lewicki, M.1
Sejnowski, T.2
-
20
-
-
0001025418
-
Bayesian interpolation
-
D. MacKay. Bayesian interpolation. Neur. Comp., 4(3):415-447, 1992.
-
(1992)
Neur. Comp.
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.1
-
21
-
-
53149149828
-
Lowrank variance approximation in GMRF models: Single and multiscale approaches
-
Oct.
-
D. Malioutov, J. Johnson, M. Choi, and A. Willsky. Lowrank variance approximation in GMRF models: Single and multiscale approaches. IEEE Trans. Signal Process., 56(10):4621-4634, Oct. 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.10
, pp. 4621-4634
-
-
Malioutov, D.1
Johnson, J.2
Choi, M.3
Willsky, A.4
-
22
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet transform
-
S. Mallat. A theory for multiresolution signal decomposition: The wavelet transform. IEEE Trans. PAMI, 11(7):674-693, 1989.
-
(1989)
IEEE Trans. PAMI
, vol.11
, Issue.7
, pp. 674-693
-
-
Mallat, S.1
-
24
-
-
0345978970
-
Expectation propagation for approximate bayesian inference
-
T. Minka. Expectation propagation for approximate bayesian inference. In Proc. UAI, 2001.
-
(2001)
Proc. UAI
-
-
Minka, T.1
-
26
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.1
Field, D.2
-
27
-
-
0039943513
-
LSQR: An algorithm for sparse linear equations and sparse least squares
-
C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. on Math. Soft., 8(1):43-71, 1982.
-
(1982)
ACM Trans. on Math. Soft.
, vol.8
, Issue.1
, pp. 43-71
-
-
Paige, C.1
Saunders, M.2
-
28
-
-
84864068448
-
Variational em algorithms for non-gaussian latent variable models
-
J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for non-gaussian latent variable models. In Proc. NIPS, 2005.
-
(2005)
Proc. NIPS
-
-
Palmer, J.1
Wipf, D.2
Kreutz-Delgado, K.3
Rao, B.4
-
29
-
-
51449112789
-
Image inpainting with a wavelet domain hidden Markov tree model
-
G. Papandreou, P. Maragos, and A. Kokaram. Image inpainting with a wavelet domain hidden Markov tree model. In Proc. ICASSP, pages 773-776, 2008.
-
(2008)
Proc. ICASSP
, pp. 773-776
-
-
Papandreou, G.1
Maragos, P.2
Kokaram, A.3
-
30
-
-
85162374586
-
Gaussian sampling by local perturbations
-
G. Papandreou and A. Yuille. Gaussian sampling by local perturbations. In Proc. NIPS, 2010.
-
(2010)
Proc. NIPS
-
-
Papandreou, G.1
Yuille, A.2
-
31
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259-268, 1992.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
32
-
-
77955989583
-
A generative perspective on MRFs in low-level vision
-
U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level vision. In Proc. CVPR, 2010.
-
(2010)
Proc. CVPR
-
-
Schmidt, U.1
Gao, Q.2
Roth, S.3
-
33
-
-
80052912678
-
Bayesian deblurring with integrated noise estimation
-
U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation. In Proc. CVPR, pages 2625-2632, 2011.
-
(2011)
Proc. CVPR
, pp. 2625-2632
-
-
Schmidt, U.1
Schelten, K.2
Roth, S.3
-
34
-
-
0034770603
-
Krylov subspace estimation
-
M. Schneider and A. Willsky. Krylov subspace estimation. SIAM J. Sci. Comp., 22(5):1840-1864, 2001.
-
(2001)
SIAM J. Sci. Comp.
, vol.22
, Issue.5
, pp. 1840-1864
-
-
Schneider, M.1
Willsky, A.2
-
35
-
-
84856679325
-
Fast convergent algorithms for expectation propagation approximate bayesian inference
-
M. Seeger and H. Nickisch. Fast convergent algorithms for expectation propagation approximate bayesian inference. In Proc. AISTATS, 2011.
-
(2011)
Proc. AISTATS
-
-
Seeger, M.1
Nickisch, H.2
-
36
-
-
84856673666
-
Large scale bayesian inference and experimental design for sparse linear models
-
M. Seeger and H. Nickisch. Large scale bayesian inference and experimental design for sparse linear models. SIAM J. Imaging Sci., 4(1):166-199, 2011.
-
(2011)
SIAM J. Imaging Sci.
, vol.4
, Issue.1
, pp. 166-199
-
-
Seeger, M.1
Nickisch, H.2
-
37
-
-
84858776889
-
Bayesian experimental design of magnetic resonance imaging sequences
-
M. Seeger, H. Nickisch, R. Pohmann, and B. Scḧolkopf. Bayesian experimental design of magnetic resonance imaging sequences. In Proc. NIPS, pages 1441-1448, 2008.
-
(2008)
Proc. NIPS
, pp. 1441-1448
-
-
Seeger, M.1
Nickisch, H.2
Pohmann, R.3
Scḧolkopf, B.4
-
38
-
-
84882847280
-
Statistical modeling of photographic images
-
A. Bovik, editor chapter 4. Academic Press, 2 edition
-
E. P. Simoncelli. Statistical modeling of photographic images. In A. Bovik, editor, Handbook of Video and Image Processing, chapter 4. 7. Academic Press, 2 edition, 2005.
-
(2005)
Handbook of Video and Image Processing
, vol.7
-
-
Simoncelli, E.P.1
-
39
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. Tipping. Sparse Bayesian learning and the relevance vector machine. J. of Mach. Learn. Res., 1:211-244, 2001.
-
(2001)
J. of Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.1
-
40
-
-
75249099795
-
Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
-
M. van Gerven, B. Cseke, F. de Lange, and T. Heskes. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage, 50:150-161, 2010.
-
(2010)
NeuroImage
, vol.50
, pp. 150-161
-
-
Van Gerven, M.1
Cseke, B.2
De Lange, F.3
Heskes, T.4
-
41
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Found. and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Found. and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.1
Jordan, M.2
-
42
-
-
0011952756
-
Correctness of belief propagation in Gaussian graphical models of arbitrary topology
-
Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Neur. Comp., 13(10):2173-2200, 2001.
-
(2001)
Neur. Comp.
, vol.13
, Issue.10
, pp. 2173-2200
-
-
Weiss, Y.1
Freeman, W.2
|