메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1332-1339

Efficient variational inference in large-scale Bayesian compressed sensing

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN COMPUTATION; COMPRESSED SENSING; COMPUTATIONAL BOTTLENECKS; DETERMINISTIC APPROACH; ESTIMATION UNCERTAINTIES; FULLY SCALABLE; GAUSSIAN MARKOV RANDOM FIELD; GAUSSIANS; HEAVY-TAILED; IMAGE DEBLURRING; LARGE-SCALE PROBLEM; LATENT VARIABLE; LEARNING MODELS; POINT ESTIMATION; POSTERIOR DISTRIBUTIONS; RANDOM SAMPLE; STANDARD OPTIMIZATION; TECHNICAL CONTRIBUTION; TIME COMPLEXITY; VARIANCE ESTIMATION; VARIATIONAL ALGORITHMS; VARIATIONAL BAYESIAN; VARIATIONAL INFERENCE;

EID: 84856650207     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2011.6130406     Document Type: Conference Paper
Times cited : (18)

References (42)
  • 1
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • H. Attias. Independent factor analysis. Neur. Comp., 11:803-851, 1999.
    • (1999) Neur. Comp. , vol.11 , pp. 803-851
    • Attias, H.1
  • 3
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. and Statist. Comp., 16(5):1190-1208, 1995.
    • (1995) SIAM J. Sci. and Statist. Comp. , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.1    Lu, P.2    Nocedal, J.3
  • 4
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Dec.
    • E. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Inf. Theory, 51(12):4203-4215, Dec. 2005.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.1    Tao, T.2
  • 5
    • 85032751046 scopus 로고    scopus 로고
    • Sparse signal recovery and acquisition with graphical models
    • Nov.
    • V. Cevher, P. Indyk, L. Carin, and R. Baraniuk. Sparse signal recovery and acquisition with graphical models. IEEE Signal Process. Mag., 27(6):92-103, Nov. 2010.
    • (2010) IEEE Signal Process. Mag. , vol.27 , Issue.6 , pp. 92-103
    • Cevher, V.1    Indyk, P.2    Carin, L.3    Baraniuk, R.4
  • 6
    • 0028416938 scopus 로고
    • Independent component analysis a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, 1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 7
    • 33644754072 scopus 로고    scopus 로고
    • Likelihoodbased estimation for GaussianMRFs
    • N. Cressie, O. Perrin, and C. Thomas-Agnan. Likelihoodbased estimation for GaussianMRFs. Stat. Meth., 2(1):1-16, 2005.
    • (2005) Stat. Meth. , vol.2 , Issue.1 , pp. 1-16
    • Cressie, N.1    Perrin, O.2    Thomas-Agnan, C.3
  • 8
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr.
    • D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289-1306, Apr. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 10
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • M. Girolami. A variational method for learning sparse and overcomplete representations. Neur. Comp., 13:2517-2532, 2001.
    • (2001) Neur. Comp. , vol.13 , pp. 2517-2532
    • Girolami, M.1
  • 12
    • 51949095670 scopus 로고    scopus 로고
    • Deblurring images: Matrices, spectra, and filtering
    • P. Hansen, J. Nagy, and D. O'Leary. Deblurring images: matrices, spectra, and filtering. SIAM, 2006.
    • (2006) SIAM
    • Hansen, P.1    Nagy, J.2    O'Leary, D.3
  • 14
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • June
    • S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Trans. Signal Process., 56(6):2346-2356, June 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 15
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan, J. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, J.2    Jaakkola, T.3    Saul, L.4
  • 16
    • 84856679324 scopus 로고    scopus 로고
    • Hessianbased norm regularization for image restoration with biomedical applications
    • to appear
    • S. Lefkimmiatis, A. Bourquard, and M. Unser. Hessianbased norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process., 2012. to appear.
    • (2012) IEEE Trans. Image Process
    • Lefkimmiatis, S.1    Bourquard, A.2    Unser, M.3
  • 17
    • 70450174344 scopus 로고    scopus 로고
    • Understanding and evaluating blind deconvolution algorithms
    • A. Levin, Y. Weiss, F. Durand, andW. Freeman. Understanding and evaluating blind deconvolution algorithms. In Proc. CVPR, pages 1964-1971, 2009.
    • (2009) Proc. CVPR , pp. 1964-1971
    • Levin, A.1    Weiss, Y.2    Durand, F.3    Freeman, W.4
  • 18
    • 80052887928 scopus 로고    scopus 로고
    • Efficient marginal likelihood optimization in blind deconvolution
    • A. Levin, Y. Weiss, F. Durand, and W. Freeman. Efficient marginal likelihood optimization in blind deconvolution. In Proc. CVPR, pages 2657-2664, 2011.
    • (2011) Proc. CVPR , pp. 2657-2664
    • Levin, A.1    Weiss, Y.2    Durand, F.3    Freeman, W.4
  • 19
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • M. Lewicki and T. Sejnowski. Learning overcomplete representations. Neur. Comp., 12:337-365, 2000.
    • (2000) Neur. Comp. , vol.12 , pp. 337-365
    • Lewicki, M.1    Sejnowski, T.2
  • 20
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. MacKay. Bayesian interpolation. Neur. Comp., 4(3):415-447, 1992.
    • (1992) Neur. Comp. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.1
  • 21
    • 53149149828 scopus 로고    scopus 로고
    • Lowrank variance approximation in GMRF models: Single and multiscale approaches
    • Oct.
    • D. Malioutov, J. Johnson, M. Choi, and A. Willsky. Lowrank variance approximation in GMRF models: Single and multiscale approaches. IEEE Trans. Signal Process., 56(10):4621-4634, Oct. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.10 , pp. 4621-4634
    • Malioutov, D.1    Johnson, J.2    Choi, M.3    Willsky, A.4
  • 22
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet transform
    • S. Mallat. A theory for multiresolution signal decomposition: The wavelet transform. IEEE Trans. PAMI, 11(7):674-693, 1989.
    • (1989) IEEE Trans. PAMI , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 24
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate bayesian inference
    • T. Minka. Expectation propagation for approximate bayesian inference. In Proc. UAI, 2001.
    • (2001) Proc. UAI
    • Minka, T.1
  • 26
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 27
    • 0039943513 scopus 로고
    • LSQR: An algorithm for sparse linear equations and sparse least squares
    • C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. on Math. Soft., 8(1):43-71, 1982.
    • (1982) ACM Trans. on Math. Soft. , vol.8 , Issue.1 , pp. 43-71
    • Paige, C.1    Saunders, M.2
  • 28
    • 84864068448 scopus 로고    scopus 로고
    • Variational em algorithms for non-gaussian latent variable models
    • J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for non-gaussian latent variable models. In Proc. NIPS, 2005.
    • (2005) Proc. NIPS
    • Palmer, J.1    Wipf, D.2    Kreutz-Delgado, K.3    Rao, B.4
  • 29
    • 51449112789 scopus 로고    scopus 로고
    • Image inpainting with a wavelet domain hidden Markov tree model
    • G. Papandreou, P. Maragos, and A. Kokaram. Image inpainting with a wavelet domain hidden Markov tree model. In Proc. ICASSP, pages 773-776, 2008.
    • (2008) Proc. ICASSP , pp. 773-776
    • Papandreou, G.1    Maragos, P.2    Kokaram, A.3
  • 30
    • 85162374586 scopus 로고    scopus 로고
    • Gaussian sampling by local perturbations
    • G. Papandreou and A. Yuille. Gaussian sampling by local perturbations. In Proc. NIPS, 2010.
    • (2010) Proc. NIPS
    • Papandreou, G.1    Yuille, A.2
  • 31
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259-268, 1992.
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 32
    • 77955989583 scopus 로고    scopus 로고
    • A generative perspective on MRFs in low-level vision
    • U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level vision. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Schmidt, U.1    Gao, Q.2    Roth, S.3
  • 33
    • 80052912678 scopus 로고    scopus 로고
    • Bayesian deblurring with integrated noise estimation
    • U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation. In Proc. CVPR, pages 2625-2632, 2011.
    • (2011) Proc. CVPR , pp. 2625-2632
    • Schmidt, U.1    Schelten, K.2    Roth, S.3
  • 34
    • 0034770603 scopus 로고    scopus 로고
    • Krylov subspace estimation
    • M. Schneider and A. Willsky. Krylov subspace estimation. SIAM J. Sci. Comp., 22(5):1840-1864, 2001.
    • (2001) SIAM J. Sci. Comp. , vol.22 , Issue.5 , pp. 1840-1864
    • Schneider, M.1    Willsky, A.2
  • 35
    • 84856679325 scopus 로고    scopus 로고
    • Fast convergent algorithms for expectation propagation approximate bayesian inference
    • M. Seeger and H. Nickisch. Fast convergent algorithms for expectation propagation approximate bayesian inference. In Proc. AISTATS, 2011.
    • (2011) Proc. AISTATS
    • Seeger, M.1    Nickisch, H.2
  • 36
    • 84856673666 scopus 로고    scopus 로고
    • Large scale bayesian inference and experimental design for sparse linear models
    • M. Seeger and H. Nickisch. Large scale bayesian inference and experimental design for sparse linear models. SIAM J. Imaging Sci., 4(1):166-199, 2011.
    • (2011) SIAM J. Imaging Sci. , vol.4 , Issue.1 , pp. 166-199
    • Seeger, M.1    Nickisch, H.2
  • 37
    • 84858776889 scopus 로고    scopus 로고
    • Bayesian experimental design of magnetic resonance imaging sequences
    • M. Seeger, H. Nickisch, R. Pohmann, and B. Scḧolkopf. Bayesian experimental design of magnetic resonance imaging sequences. In Proc. NIPS, pages 1441-1448, 2008.
    • (2008) Proc. NIPS , pp. 1441-1448
    • Seeger, M.1    Nickisch, H.2    Pohmann, R.3    Scḧolkopf, B.4
  • 38
    • 84882847280 scopus 로고    scopus 로고
    • Statistical modeling of photographic images
    • A. Bovik, editor chapter 4. Academic Press, 2 edition
    • E. P. Simoncelli. Statistical modeling of photographic images. In A. Bovik, editor, Handbook of Video and Image Processing, chapter 4. 7. Academic Press, 2 edition, 2005.
    • (2005) Handbook of Video and Image Processing , vol.7
    • Simoncelli, E.P.1
  • 39
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. Tipping. Sparse Bayesian learning and the relevance vector machine. J. of Mach. Learn. Res., 1:211-244, 2001.
    • (2001) J. of Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.1
  • 40
    • 75249099795 scopus 로고    scopus 로고
    • Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    • M. van Gerven, B. Cseke, F. de Lange, and T. Heskes. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage, 50:150-161, 2010.
    • (2010) NeuroImage , vol.50 , pp. 150-161
    • Van Gerven, M.1    Cseke, B.2    De Lange, F.3    Heskes, T.4
  • 41
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Found. and Trends in Machine Learning, 1(1-2):1-305, 2008.
    • (2008) Found. and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.1    Jordan, M.2
  • 42
    • 0011952756 scopus 로고    scopus 로고
    • Correctness of belief propagation in Gaussian graphical models of arbitrary topology
    • Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Neur. Comp., 13(10):2173-2200, 2001.
    • (2001) Neur. Comp. , vol.13 , Issue.10 , pp. 2173-2200
    • Weiss, Y.1    Freeman, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.