-
2
-
-
0033561886
-
Independent factor analysis
-
H. Attias. Independent factor analysis. Neural Computation, 11:803-851, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 803-851
-
-
Attias, H.1
-
4
-
-
13844295342
-
The variational Bayesian em algorithm for incomplete data: With application to scoring graphical model structures
-
University of Oxford Press
-
M. J. Beal and Z. Ghahrarmani. The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. In Bayesian Statistics 7, pages 453-464. University of Oxford Press, 2002.
-
(2002)
Bayesian Statistics
, vol.7
, pp. 453-464
-
-
Beal, M.J.1
Ghahrarmani, Z.2
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
0040618942
-
Iteratively reweighted least squares for linear regression when errors are Normal/Independent distributed
-
P. R. Krishnaiah, editor. North Holland Publishing Company
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Iteratively reweighted least squares for linear regression when errors are Normal/Independent distributed. In P. R. Krishnaiah, editor, Multivariate Analysis V, pages 35-57. North Holland Publishing Company, 1980.
-
(1980)
Multivariate Analysis
, vol.5
, pp. 35-57
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
11
-
-
4544258714
-
Adaptive sparseness using Jeffreys prior
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA. MIT Press
-
M. Figueiredo. Adaptive sparseness using Jeffreys prior. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Figueiredo, M.1
-
14
-
-
0038132749
-
A variational method for learning sparse and overcomplete representations
-
M. Girolami. A variational method for learning sparse and overcomplete representations. Neural Computation, 13:2517-2532, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 2517-2532
-
-
Girolami, M.1
-
18
-
-
0000935895
-
An introduction to variational methods for graphical models
-
M. I. Jordan, editor. Kluwer Academic Publishers
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer Academic Publishers, 1998.
-
(1998)
Learning in Graphical Models
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
19
-
-
0001539681
-
Mixtures of distributions, moment inequalities, and measures of exponentiality and Normality
-
J. Keilson and F. W. Steutel. Mixtures of distributions, moment inequalities, and measures of exponentiality and Normality. The Annals of Probability, 2:112-130, 1974.
-
(1974)
The Annals of Probability
, vol.2
, pp. 112-130
-
-
Keilson, J.1
Steutel, F.W.2
-
21
-
-
0001025418
-
Bayesian interpolation
-
D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
23
-
-
0000597408
-
Comparison of approximate methods for handling hyperparameters
-
D. J. C. Mackay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5):1035-1068, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.5
, pp. 1035-1068
-
-
MacKay, D.J.C.1
-
24
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan, editor. Kluwer
-
R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368. Kluwer, 1998.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
25
-
-
0037333986
-
Subset selection in noise based on diversity measure minimization
-
B. D. Rao, K. Engan, S. F. Cotter, J. Palmer, and K. Kreutz-Delgado. Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Processing, 51(3), 2003.
-
(2003)
IEEE Trans. Signal Processing
, vol.51
, Issue.3
-
-
Rao, B.D.1
Engan, K.2
Cotter, S.F.3
Palmer, J.4
Kreutz-Delgado, K.5
-
26
-
-
0031102203
-
Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
-
B. D. Rao and I. F. Gorodnitsky. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Processing, 45:600-616, 1997.
-
(1997)
IEEE Trans. Signal Processing
, vol.45
, pp. 600-616
-
-
Rao, B.D.1
Gorodnitsky, I.F.2
-
28
-
-
0033556862
-
A unifying review of linear gaussian models
-
Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural Computation, 11(5):305-345, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.5
, pp. 305-345
-
-
Roweis, S.1
Ghahramani, Z.2
-
30
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1:211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
32
-
-
34548756893
-
Perspectives on sparse bayesian learning
-
S. Thrun, L. Saul, and B. Schölkopf, editors, Cambridge, MA. MIT Press
-
D. Wipf, J. Palmer, and B. Rao. Perspectives on sparse bayesian learning. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.16
-
-
Wipf, D.1
Palmer, J.2
Rao, B.3
|