메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1059-1066

Variational em algorithms for non-Gaussian latent variable models

Author keywords

[No Author keywords available]

Indexed keywords

BAYES METHOD; BOUNDING METHOD; ENSEMBLE LEARNING; LATENT VARIABLE; LATENT VARIABLE MODELS; NON-GAUSSIAN; VARIATIONAL EM;

EID: 84864068448     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (113)

References (32)
  • 2
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • H. Attias. Independent factor analysis. Neural Computation, 11:803-851, 1999.
    • (1999) Neural Computation , vol.11 , pp. 803-851
    • Attias, H.1
  • 4
    • 13844295342 scopus 로고    scopus 로고
    • The variational Bayesian em algorithm for incomplete data: With application to scoring graphical model structures
    • University of Oxford Press
    • M. J. Beal and Z. Ghahrarmani. The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. In Bayesian Statistics 7, pages 453-464. University of Oxford Press, 2002.
    • (2002) Bayesian Statistics , vol.7 , pp. 453-464
    • Beal, M.J.1    Ghahrarmani, Z.2
  • 10
    • 0040618942 scopus 로고
    • Iteratively reweighted least squares for linear regression when errors are Normal/Independent distributed
    • P. R. Krishnaiah, editor. North Holland Publishing Company
    • A. P. Dempster, N. M. Laird, and D. B. Rubin. Iteratively reweighted least squares for linear regression when errors are Normal/Independent distributed. In P. R. Krishnaiah, editor, Multivariate Analysis V, pages 35-57. North Holland Publishing Company, 1980.
    • (1980) Multivariate Analysis , vol.5 , pp. 35-57
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 4544258714 scopus 로고    scopus 로고
    • Adaptive sparseness using Jeffreys prior
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA. MIT Press
    • M. Figueiredo. Adaptive sparseness using Jeffreys prior. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Figueiredo, M.1
  • 14
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • M. Girolami. A variational method for learning sparse and overcomplete representations. Neural Computation, 13:2517-2532, 2001.
    • (2001) Neural Computation , vol.13 , pp. 2517-2532
    • Girolami, M.1
  • 18
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, editor. Kluwer Academic Publishers
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer Academic Publishers, 1998.
    • (1998) Learning in Graphical Models
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 19
    • 0001539681 scopus 로고
    • Mixtures of distributions, moment inequalities, and measures of exponentiality and Normality
    • J. Keilson and F. W. Steutel. Mixtures of distributions, moment inequalities, and measures of exponentiality and Normality. The Annals of Probability, 2:112-130, 1974.
    • (1974) The Annals of Probability , vol.2 , pp. 112-130
    • Keilson, J.1    Steutel, F.W.2
  • 21
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 23
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • D. J. C. Mackay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5):1035-1068, 1999.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1035-1068
    • MacKay, D.J.C.1
  • 24
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor. Kluwer
    • R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368. Kluwer, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 26
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
    • B. D. Rao and I. F. Gorodnitsky. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Processing, 45:600-616, 1997.
    • (1997) IEEE Trans. Signal Processing , vol.45 , pp. 600-616
    • Rao, B.D.1    Gorodnitsky, I.F.2
  • 28
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural Computation, 11(5):305-345, 1999.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 30
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 32
    • 34548756893 scopus 로고    scopus 로고
    • Perspectives on sparse bayesian learning
    • S. Thrun, L. Saul, and B. Schölkopf, editors, Cambridge, MA. MIT Press
    • D. Wipf, J. Palmer, and B. Rao. Perspectives on sparse bayesian learning. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, Cambridge, MA, 2003. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.16
    • Wipf, D.1    Palmer, J.2    Rao, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.