메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Gaussian sampling by local perturbations

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; IMAGE SEGMENTATION; ITERATIVE METHODS; MARKOV PROCESSES;

EID: 85162374586     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (80)

References (37)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for Boltzmann machines. Cogn. Science, 9(1):147-169, 1985.
    • (1985) Cogn. Science , vol.9 , Issue.1 , pp. 147-169
    • Ackley, D.1    Hinton, G.2    Sejnowski, T.3
  • 2
    • 0003071947 scopus 로고
    • Scale mixtures of normal distributions
    • D. Andrews and C. Mallows. Scale mixtures of normal distributions. JRSS (B), 36(1):99-102, 1974.
    • (1974) JRSS (B) , vol.36 , Issue.1 , pp. 99-102
    • Andrews, D.1    Mallows, C.2
  • 3
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag. Spatial interaction and the statistical analysis of lattice systems. JRSS (B), 36(2):192-236, 1974.
    • (1974) JRSS (B) , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 4
    • 0029341230 scopus 로고
    • Nonlinear image recovery with half-quadratic regularization
    • D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process., 4(7):932-946, 1995.
    • (1995) IEEE Trans. Image Process. , vol.4 , Issue.7 , pp. 932-946
    • Geman, D.1    Yang, C.2
  • 5
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. PAMI, 6(6):721-741, 1984.
    • (1984) IEEE Trans. PAMI , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 7
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton. Training products of experts by minimizing contrastive divergence. Neur. Comp., 14(8):1771-1800, 2002.
    • (2002) Neur. Comp. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 9
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML, 2009.
    • (2009) Proc ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 10
    • 62249200514 scopus 로고    scopus 로고
    • Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures
    • Apr.
    • S. Lyu and E. Simoncelli. Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures. IEEE Trans. PAMI, 31(4):693-706, Apr. 2009.
    • (2009) IEEE Trans. PAMI , vol.31 , Issue.4 , pp. 693-706
    • Lyu, S.1    Simoncelli, E.2
  • 11
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. MacKay. Bayesian interpolation. Neur. Comp., 4(3):415-447, 1992.
    • (1992) Neur. Comp. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.1
  • 12
    • 53149149828 scopus 로고    scopus 로고
    • Low-rank variance approximation in GMRF models: Single and multiscale approaches
    • Oct.
    • D. Malioutov, J. Johnson, M. Choi, and A. Willsky. Low-rank variance approximation in GMRF models: Single and multiscale approaches. IEEE Trans. Signal Process., 56(10):4621-4634, Oct. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.10 , pp. 4621-4634
    • Malioutov, D.1    Johnson, J.2    Choi, M.3    Willsky, A.4
  • 13
    • 33749346853 scopus 로고    scopus 로고
    • Walk sums and belief propagation in Gaussian graphical models
    • D. Malioutov, J. Johnson, and A. Willsky. Walk sums and belief propagation in Gaussian graphical models. J. of Mach. Learning Res., 7:2031-2064, 2006.
    • (2006) J. of Mach. Learning Res. , vol.7 , pp. 2031-2064
    • Malioutov, D.1    Johnson, J.2    Willsky, A.3
  • 14
    • 37249040173 scopus 로고    scopus 로고
    • Model distortions in BayesianMAP reconstruction
    • M. Nikolova. Model distortions in BayesianMAP reconstruction. Inv. Pr. and Imag., 1(2):399-422, 2007.
    • (2007) Inv. Pr. and Imag. , vol.1 , Issue.2 , pp. 399-422
    • Nikolova, M.1
  • 15
    • 0039943513 scopus 로고
    • LSQR: An algorithm for sparse linear equations and sparse least squares
    • C. Paige andM. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. on Math. Software, 8(1):43-71, 1982.
    • (1982) ACM Trans. on Math. Software , vol.8 , Issue.1 , pp. 43-71
    • Paige, C.1    Saunders, M.2
  • 16
    • 51449112789 scopus 로고    scopus 로고
    • Image inpainting with a wavelet domain hidden Markov tree model
    • G. Papandreou, P. Maragos, and A. Kokaram. Image inpainting with a wavelet domain hidden Markov tree model. In Proc. ICASSP, pages 773-776, 2008.
    • (2008) Proc. ICASSP , pp. 773-776
    • Papandreou, G.1    Maragos, P.2    Kokaram, A.3
  • 18
    • 84879850729 scopus 로고    scopus 로고
    • Factored 3-way restricted Boltzmann machines for modeling natural images
    • M. Ranzato, A. Krizhevsky, and G. Hinton. Factored 3-way restricted Boltzmann machines for modeling natural images. In Proc. AISTATS, 2010.
    • (2010) Proc. AISTATS
    • Ranzato, M.1    Krizhevsky, A.2    Hinton, G.3
  • 19
    • 60449120149 scopus 로고    scopus 로고
    • Fields of experts
    • S. Roth and M. Black. Fields of experts. Int. J. of Comp. Vis., 82(2):205-229, 2009.
    • (2009) Int. J. of Comp. Vis. , vol.82 , Issue.2 , pp. 205-229
    • Roth, S.1    Black, M.2
  • 20
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neur. Comp., 11:305-345, 1999.
    • (1999) Neur. Comp. , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 21
    • 0035649131 scopus 로고    scopus 로고
    • Fast sampling of Gaussian Markov random fields
    • H. Rue. Fast sampling of Gaussian Markov random fields. JRSS (B), 63(2):325-338, 2001.
    • (2001) JRSS (B) , vol.63 , Issue.2 , pp. 325-338
    • Rue, H.1
  • 22
    • 26844511557 scopus 로고    scopus 로고
    • Gaussian Markov random fields
    • Chapman & Hall
    • H. Rue and L. Held. Gaussian Markov random fields. Theory and Applications. Chapman & Hall, 2005.
    • (2005) Theory and Applications
    • Rue, H.1    Held, L.2
  • 23
    • 77955989583 scopus 로고    scopus 로고
    • A generative perspective on MRFs in low-level vision
    • U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level vision. In CVPR, 2010.
    • (2010) CVPR
    • Schmidt, U.1    Gao, Q.2    Roth, S.3
  • 24
    • 0034770603 scopus 로고    scopus 로고
    • Krylov subspace estimation
    • M. Schneider and A. Willsky. Krylov subspace estimation. SIAM J. Sci. Comp., 22(5):1840-1864, 2001.
    • (2001) SIAM J. Sci. Comp. , vol.22 , Issue.5 , pp. 1840-1864
    • Schneider, M.1    Willsky, A.2
  • 26
    • 84858776889 scopus 로고    scopus 로고
    • Bayesian experimental design of magnetic resonance imaging sequences
    • M. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf. Bayesian experimental design of magnetic resonance imaging sequences. In NIPS, pages 1441-1448, 2008.
    • (2008) NIPS , pp. 1441-1448
    • Seeger, M.1    Nickisch, H.2    Pohmann, R.3    Schölkopf, B.4
  • 27
    • 0041016840 scopus 로고
    • Bayesian numerical analysis
    • W. Grandy and P. Milonni, editors, Cambridge Univ. Press
    • J. Skilling. Bayesian numerical analysis. In W. Grandy and P. Milonni, editors, Physics and Probability, pages 207-221. Cambridge Univ. Press, 1993.
    • (1993) Physics and Probability , pp. 207-221
    • Skilling, J.1
  • 28
    • 7544249120 scopus 로고    scopus 로고
    • Embedded trees: Estimation of Gaussian processes on graphs with cycles
    • Nov.
    • E. Sudderth, M. Wainwright, and A. Willsky. Embedded trees: Estimation of Gaussian processes on graphs with cycles. IEEE Trans. Signal Process., 52(11):3136-3150, Nov. 2004.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.11 , pp. 3136-3150
    • Sudderth, E.1    Wainwright, M.2    Willsky, A.3
  • 29
    • 0000169287 scopus 로고
    • Bayesian modeling of uncertainty in low-level vision
    • R. Szeliski. Bayesian modeling of uncertainty in low-level vision. Int. J. of Comp. Vis., 5(3):271-301, 1990.
    • (1990) Int. J. of Comp. Vis , vol.5 , Issue.3 , pp. 271-301
    • Szeliski, R.1
  • 31
    • 0024051722 scopus 로고
    • The computation of visible-surface representations
    • D. Terzopoulos. The computation of visible-surface representations. IEEE Trans. PAMI, 10(4):417-438, 1988.
    • (1988) IEEE Trans. PAMI , vol.10 , Issue.4 , pp. 417-438
    • Terzopoulos, D.1
  • 32
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. Tipping. Sparse Bayesian learning and the relevance vector machine. J. of Mach. Learning Res., 1:211-244, 2001.
    • (2001) J. of Mach. Learning Res. , vol.1 , pp. 211-244
    • Tipping, M.1
  • 33
    • 0011952756 scopus 로고    scopus 로고
    • Correctness of belief propagation in Gaussian graphical models of arbitrary topology
    • Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Neur. Comp., 13(10):2173-2200, 2001.
    • (2001) Neur. Comp. , vol.13 , Issue.10 , pp. 2173-2200
    • Weiss, Y.1    Freeman, W.2
  • 34
    • 35148861156 scopus 로고    scopus 로고
    • What makes a good model of natural images?
    • Y. Weiss and W. Freeman. What makes a good model of natural images? In CVPR, 2007.
    • (2007) CVPR
    • Weiss, Y.1    Freeman, W.2
  • 35
    • 79953038910 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of Student-t distributions
    • M. Welling, G. Hinton, and S. Osindero. Learning sparse topographic representations with products of Student-t distributions. In NIPS, 2002.
    • (2002) NIPS
    • Welling, M.1    Hinton, G.2    Osindero, S.3
  • 36
    • 0345421566 scopus 로고    scopus 로고
    • Multiresolution Markov models for signal and image processing
    • A. Willsky. Multiresolution Markov models for signal and image processing. Proc. IEEE, 90(8):1396-1458, 2002.
    • (2002) Proc IEEE , vol.90 , Issue.8 , pp. 1396-1458
    • Willsky, A.1
  • 37
    • 0032025550 scopus 로고    scopus 로고
    • Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling
    • S. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. Int. J. of Comp. Vis., 27(2):107-126, 1998.
    • (1998) Int. J. of Comp. Vis. , vol.27 , Issue.2 , pp. 107-126
    • Zhu, S.1    Wu, Y.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.