메뉴 건너뛰기




Volumn 22, Issue 2, 2012, Pages 61-81

Biomechanical regulation of contractility: Spatial control and dynamics

Author keywords

[No Author keywords available]

Indexed keywords

ISOPROTEIN; MYOSIN; MYOSIN ADENOSINE TRIPHOSPHATASE; SEPTIN; TROPOMYOSIN;

EID: 84856516992     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2011.10.001     Document Type: Review
Times cited : (239)

References (191)
  • 1
    • 43149086620 scopus 로고    scopus 로고
    • A quantitative analysis of contractility in active cytoskeletal protein networks
    • Bendix P.M., et al. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J. 2008, 94:3126-3136.
    • (2008) Biophys. J. , vol.94 , pp. 3126-3136
    • Bendix, P.M.1
  • 2
    • 70349339250 scopus 로고    scopus 로고
    • An active biopolymer network controlled by molecular motors
    • Koenderink G.H., et al. An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15192-15197.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 15192-15197
    • Koenderink, G.H.1
  • 3
    • 70350454867 scopus 로고    scopus 로고
    • Non-muscle myosin II takes centre stage in cell adhesion and migration
    • Vicente-Manzanares M., et al. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 2009, 10:778-790.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 778-790
    • Vicente-Manzanares, M.1
  • 4
    • 4544316472 scopus 로고    scopus 로고
    • Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo
    • Munro E., et al. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell 2004, 7:413-424.
    • (2004) Dev. Cell , vol.7 , pp. 413-424
    • Munro, E.1
  • 5
    • 0034677906 scopus 로고    scopus 로고
    • Myosins: a diverse superfamily
    • Sellers J.R. Myosins: a diverse superfamily. Biochim. Biophys. Acta 2000, 1496:3-22.
    • (2000) Biochim. Biophys. Acta , vol.1496 , pp. 3-22
    • Sellers, J.R.1
  • 6
    • 0027226230 scopus 로고
    • Structure of the actin-myosin complex and its implications for muscle contraction
    • Rayment I., et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 1993, 261:58-65.
    • (1993) Science , vol.261 , pp. 58-65
    • Rayment, I.1
  • 7
    • 0028261701 scopus 로고
    • Single myosin molecule mechanics: piconewton forces and nanometre steps
    • Finer J.T., et al. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 1994, 368:113-119.
    • (1994) Nature , vol.368 , pp. 113-119
    • Finer, J.T.1
  • 8
    • 0016826285 scopus 로고
    • Human platelet myosin. II. In vitro assembly and structure of myosin filaments
    • Niederman R., Pollard T.D. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J. Cell Biol. 1975, 67:72-92.
    • (1975) J. Cell Biol. , vol.67 , pp. 72-92
    • Niederman, R.1    Pollard, T.D.2
  • 10
    • 2542627629 scopus 로고    scopus 로고
    • Elastic behavior of cross-linked and bundled actin networks
    • Gardel M.L., et al. Elastic behavior of cross-linked and bundled actin networks. Science 2004, 304:1301-1305.
    • (2004) Science , vol.304 , pp. 1301-1305
    • Gardel, M.L.1
  • 11
    • 32344453990 scopus 로고    scopus 로고
    • Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells
    • Gardel M.L., et al. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:1762-1767.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 1762-1767
    • Gardel, M.L.1
  • 12
    • 0023091231 scopus 로고
    • Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate
    • Sato M., et al. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. Nature 1987, 325:828-830.
    • (1987) Nature , vol.325 , pp. 828-830
    • Sato, M.1
  • 13
    • 85047699197 scopus 로고    scopus 로고
    • Active fluidization of polymer networks through molecular motors
    • Humphrey D., et al. Active fluidization of polymer networks through molecular motors. Nature 2002, 416:413-416.
    • (2002) Nature , vol.416 , pp. 413-416
    • Humphrey, D.1
  • 15
    • 51649089157 scopus 로고    scopus 로고
    • Transient binding and dissipation in cross-linked actin networks
    • Lieleg O., et al. Transient binding and dissipation in cross-linked actin networks. Phys. Rev. Lett. 2008, 101:108101.
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 108101
    • Lieleg, O.1
  • 16
    • 58049220350 scopus 로고    scopus 로고
    • Mechanotransduction in development: a growing role for contractility
    • Wozniak M.A., Chen C.S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 2009, 10:34-43.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 34-43
    • Wozniak, M.A.1    Chen, C.S.2
  • 17
    • 21744445075 scopus 로고    scopus 로고
    • Regulation of myosin II during cytokinesis in higher eukaryotes
    • Matsumura F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol. 2005, 15:371-377.
    • (2005) Trends Cell Biol. , vol.15 , pp. 371-377
    • Matsumura, F.1
  • 18
    • 0020678721 scopus 로고
    • Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules
    • Craig R., et al. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 1983, 302:436-439.
    • (1983) Nature , vol.302 , pp. 436-439
    • Craig, R.1
  • 19
    • 47049110451 scopus 로고    scopus 로고
    • Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells
    • Jung H.S., et al. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell 2008, 19:3234-3242.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 3234-3242
    • Jung, H.S.1
  • 20
    • 0027372314 scopus 로고
    • Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo
    • Egelhoff T.T., et al. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 1993, 75:363-371.
    • (1993) Cell , vol.75 , pp. 363-371
    • Egelhoff, T.T.1
  • 21
    • 24344452910 scopus 로고    scopus 로고
    • Multiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium
    • Yumura S., et al. Multiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium. Mol. Biol. Cell 2005, 16:4256-4266.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4256-4266
    • Yumura, S.1
  • 22
    • 56149121708 scopus 로고    scopus 로고
    • Multiple mechanisms for accumulation of myosin II filaments at the equator during cytokinesis
    • Yumura S., et al. Multiple mechanisms for accumulation of myosin II filaments at the equator during cytokinesis. Traffic 2008, 9:2089-2099.
    • (2008) Traffic , vol.9 , pp. 2089-2099
    • Yumura, S.1
  • 23
    • 0032539586 scopus 로고    scopus 로고
    • Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites
    • Murakami N., et al. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites. Biochemistry 1998, 37:1989-2003.
    • (1998) Biochemistry , vol.37 , pp. 1989-2003
    • Murakami, N.1
  • 24
    • 0034687146 scopus 로고    scopus 로고
    • Two distinct mechanisms for regulation of nonmuscle myosin assembly via the heavy chain: phosphorylation for MIIB and mts 1 binding for MIIA
    • Murakami N., et al. Two distinct mechanisms for regulation of nonmuscle myosin assembly via the heavy chain: phosphorylation for MIIB and mts 1 binding for MIIA. Biochemistry 2000, 39:11441-11451.
    • (2000) Biochemistry , vol.39 , pp. 11441-11451
    • Murakami, N.1
  • 25
    • 33644865885 scopus 로고    scopus 로고
    • Protein kinase Cgamma regulates myosin IIB phosphorylation, cellular localization, and filament assembly
    • Rosenberg M., Ravid S. Protein kinase Cgamma regulates myosin IIB phosphorylation, cellular localization, and filament assembly. Mol. Biol. Cell 2006, 17:1364-1374.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1364-1374
    • Rosenberg, M.1    Ravid, S.2
  • 26
    • 0014750098 scopus 로고
    • The locomotion of fibroblasts in culture. I. Movements of the leading edge
    • Abercrombie M., et al. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp. Cell Res. 1970, 59:393-398.
    • (1970) Exp. Cell Res. , vol.59 , pp. 393-398
    • Abercrombie, M.1
  • 27
    • 0030045346 scopus 로고    scopus 로고
    • Cell migration: a physically integrated molecular process
    • Lauffenburger D.A., Horwitz A.F. Cell migration: a physically integrated molecular process. Cell 1996, 84:359-369.
    • (1996) Cell , vol.84 , pp. 359-369
    • Lauffenburger, D.A.1    Horwitz, A.F.2
  • 28
    • 36248969983 scopus 로고    scopus 로고
    • Actin stress fibres
    • Pellegrin S., Mellor H. Actin stress fibres. J. Cell Sci. 2007, 120:3491-3499.
    • (2007) J. Cell Sci. , vol.120 , pp. 3491-3499
    • Pellegrin, S.1    Mellor, H.2
  • 29
    • 50649090264 scopus 로고    scopus 로고
    • Mechanisms of actin stress fibre assembly
    • Naumanen P., et al. Mechanisms of actin stress fibre assembly. J. Microsc. 2008, 231:446-454.
    • (2008) J. Microsc. , vol.231 , pp. 446-454
    • Naumanen, P.1
  • 30
    • 0026778133 scopus 로고
    • The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors
    • Ridley A.J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992, 70:389-399.
    • (1992) Cell , vol.70 , pp. 389-399
    • Ridley, A.J.1    Hall, A.2
  • 31
    • 0029789678 scopus 로고    scopus 로고
    • The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton
    • Leung T., et al. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 1996, 16:5313-5327.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 5313-5327
    • Leung, T.1
  • 32
    • 33646179573 scopus 로고    scopus 로고
    • Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics
    • Kumar S., et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 2006, 90:3762-3773.
    • (2006) Biophys. J. , vol.90 , pp. 3762-3773
    • Kumar, S.1
  • 33
    • 36249024229 scopus 로고    scopus 로고
    • Cytokinesis: placing and making the final cut
    • Barr F.A., Gruneberg U. Cytokinesis: placing and making the final cut. Cell 2007, 131:847-860.
    • (2007) Cell , vol.131 , pp. 847-860
    • Barr, F.A.1    Gruneberg, U.2
  • 34
    • 3142712982 scopus 로고    scopus 로고
    • Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac
    • D'Avino P.P., et al. Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. J. Cell Biol. 2004, 166:61-71.
    • (2004) J. Cell Biol. , vol.166 , pp. 61-71
    • D'Avino, P.P.1
  • 35
    • 6344274982 scopus 로고    scopus 로고
    • Drosophila citron kinase is required for the final steps of cytokinesis
    • Naim V., et al. Drosophila citron kinase is required for the final steps of cytokinesis. Mol. Biol. Cell 2004, 15:5053-5063.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 5053-5063
    • Naim, V.1
  • 36
    • 36248988887 scopus 로고    scopus 로고
    • Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation
    • Dean S.O., Spudich J.A. Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation. PLoS ONE 2006, 1:e131.
    • (2006) PLoS ONE , vol.1
    • Dean, S.O.1    Spudich, J.A.2
  • 37
    • 31944434665 scopus 로고    scopus 로고
    • KIF14 and citron kinase act together to promote efficient cytokinesis
    • Gruneberg U., et al. KIF14 and citron kinase act together to promote efficient cytokinesis. J. Cell Biol. 2006, 172:363-372.
    • (2006) J. Cell Biol. , vol.172 , pp. 363-372
    • Gruneberg, U.1
  • 38
    • 0033615977 scopus 로고    scopus 로고
    • Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo
    • Kawano Y., et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 1999, 147:1023-1038.
    • (1999) J. Cell Biol. , vol.147 , pp. 1023-1038
    • Kawano, Y.1
  • 39
    • 22244473991 scopus 로고    scopus 로고
    • A microtubule-dependent zone of active RhoA during cleavage plane specification
    • Bement W.M., et al. A microtubule-dependent zone of active RhoA during cleavage plane specification. J. Cell Biol. 2005, 170:91-101.
    • (2005) J. Cell Biol. , vol.170 , pp. 91-101
    • Bement, W.M.1
  • 40
    • 0027509362 scopus 로고
    • Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI)
    • Kishi K., et al. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J. Cell Biol. 1993, 120:1187-1195.
    • (1993) J. Cell Biol. , vol.120 , pp. 1187-1195
    • Kishi, K.1
  • 41
    • 0031037187 scopus 로고    scopus 로고
    • A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos
    • Drechsel D.N., et al. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 1997, 7:12-23.
    • (1997) Curr. Biol. , vol.7 , pp. 12-23
    • Drechsel, D.N.1
  • 42
    • 0037069690 scopus 로고    scopus 로고
    • Rho GTPases in cell biology
    • Etienne-Manneville S., Hall A. Rho GTPases in cell biology. Nature 2002, 420:629-635.
    • (2002) Nature , vol.420 , pp. 629-635
    • Etienne-Manneville, S.1    Hall, A.2
  • 43
    • 23944499922 scopus 로고    scopus 로고
    • An ECT2-centralspindlin complex regulates the localization and function of RhoA
    • Yuce O., et al. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 2005, 170:571-582.
    • (2005) J. Cell Biol. , vol.170 , pp. 571-582
    • Yuce, O.1
  • 44
    • 0037244352 scopus 로고    scopus 로고
    • A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis
    • Somers W.G., Saint R. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev. Cell 2003, 4:29-39.
    • (2003) Dev. Cell , vol.4 , pp. 29-39
    • Somers, W.G.1    Saint, R.2
  • 45
    • 28244444494 scopus 로고    scopus 로고
    • Cytokinesis: welcome to the Rho zone
    • Piekny A., et al. Cytokinesis: welcome to the Rho zone. Trends Cell Biol. 2005, 15:651-658.
    • (2005) Trends Cell Biol. , vol.15 , pp. 651-658
    • Piekny, A.1
  • 46
    • 66249092744 scopus 로고    scopus 로고
    • Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation
    • Wolfe B.A., et al. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol. 2009, 7:e1000110.
    • (2009) PLoS Biol. , vol.7
    • Wolfe, B.A.1
  • 47
    • 42649123661 scopus 로고    scopus 로고
    • Epithelial morphogenesis in embryos: asymmetries, motors and brakes
    • Quintin S., et al. Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet. 2008, 24:221-230.
    • (2008) Trends Genet. , vol.24 , pp. 221-230
    • Quintin, S.1
  • 48
    • 33745625858 scopus 로고    scopus 로고
    • Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis
    • Simoes S., et al. Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development 2006, 133:4257-4267.
    • (2006) Development , vol.133 , pp. 4257-4267
    • Simoes, S.1
  • 49
    • 78649290482 scopus 로고    scopus 로고
    • Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination
    • Sherrard K., et al. Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr. Biol. 2010, 20:1499-1510.
    • (2010) Curr. Biol. , vol.20 , pp. 1499-1510
    • Sherrard, K.1
  • 50
    • 0031443277 scopus 로고    scopus 로고
    • The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation
    • Barrett K., et al. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 1997, 91:905-915.
    • (1997) Cell , vol.91 , pp. 905-915
    • Barrett, K.1
  • 51
    • 0031965218 scopus 로고    scopus 로고
    • DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila
    • Hacker U., Perrimon N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 1998, 12:274-284.
    • (1998) Genes Dev. , vol.12 , pp. 274-284
    • Hacker, U.1    Perrimon, N.2
  • 52
    • 27144483942 scopus 로고    scopus 로고
    • Folded gastrulation, cell shape change and the control of myosin localization
    • Dawes-Hoang R.E., et al. folded gastrulation, cell shape change and the control of myosin localization. Development 2005, 132:4165-4178.
    • (2005) Development , vol.132 , pp. 4165-4178
    • Dawes-Hoang, R.E.1
  • 53
    • 58749084302 scopus 로고    scopus 로고
    • Pulsed contractions of an actin-myosin network drive apical constriction
    • Martin A.C., et al. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 2009, 457:495-499.
    • (2009) Nature , vol.457 , pp. 495-499
    • Martin, A.C.1
  • 54
    • 33846618654 scopus 로고    scopus 로고
    • Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2
    • Kolsch V., et al. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 2007, 315:384-386.
    • (2007) Science , vol.315 , pp. 384-386
    • Kolsch, V.1
  • 55
    • 6944252346 scopus 로고    scopus 로고
    • Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner
    • Rogers S.L., et al. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 2004, 14:1827-1833.
    • (2004) Curr. Biol. , vol.14 , pp. 1827-1833
    • Rogers, S.L.1
  • 56
    • 0033601076 scopus 로고    scopus 로고
    • Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice
    • Hildebrand J.D., Soriano P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 1999, 99:485-497.
    • (1999) Cell , vol.99 , pp. 485-497
    • Hildebrand, J.D.1    Soriano, P.2
  • 57
    • 0346403360 scopus 로고    scopus 로고
    • Shroom induces apical constriction and is required for hingepoint formation during neural tube closure
    • Haigo S.L., et al. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 2003, 13:2125-2137.
    • (2003) Curr. Biol. , vol.13 , pp. 2125-2137
    • Haigo, S.L.1
  • 58
    • 29244449302 scopus 로고    scopus 로고
    • Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network
    • Hildebrand J.D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 2005, 118:5191-5203.
    • (2005) J. Cell Sci. , vol.118 , pp. 5191-5203
    • Hildebrand, J.D.1
  • 59
    • 44449176536 scopus 로고    scopus 로고
    • Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling
    • Nishimura T., Takeichi M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 2008, 135:1493-1502.
    • (2008) Development , vol.135 , pp. 1493-1502
    • Nishimura, T.1    Takeichi, M.2
  • 60
    • 0028218180 scopus 로고
    • Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes
    • Irvine K.D., Wieschaus E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 1994, 120:827-841.
    • (1994) Development , vol.120 , pp. 827-841
    • Irvine, K.D.1    Wieschaus, E.2
  • 61
    • 1642282826 scopus 로고    scopus 로고
    • Patterned gene expression directs bipolar planar polarity in Drosophila
    • Zallen J.A., Wieschaus E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 2004, 6:343-355.
    • (2004) Dev. Cell , vol.6 , pp. 343-355
    • Zallen, J.A.1    Wieschaus, E.2
  • 62
    • 2942587231 scopus 로고    scopus 로고
    • Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation
    • Bertet C., et al. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 2004, 429:667-671.
    • (2004) Nature , vol.429 , pp. 667-671
    • Bertet, C.1
  • 63
    • 33748920035 scopus 로고    scopus 로고
    • Multicellular rosette formation links planar cell polarity to tissue morphogenesis
    • Blankenship J.T., et al. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 2006, 11:459-470.
    • (2006) Dev. Cell , vol.11 , pp. 459-470
    • Blankenship, J.T.1
  • 64
    • 57049160895 scopus 로고    scopus 로고
    • Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis
    • Rauzi M., et al. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 2008, 10:1401-1410.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1401-1410
    • Rauzi, M.1
  • 65
    • 70450283823 scopus 로고    scopus 로고
    • Myosin II dynamics are regulated by tension in intercalating cells
    • Fernandez-Gonzalez R., et al. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 2009, 17:736-743.
    • (2009) Dev. Cell , vol.17 , pp. 736-743
    • Fernandez-Gonzalez, R.1
  • 66
    • 77956589355 scopus 로고    scopus 로고
    • Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation
    • Simoes Sde M., et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 2010, 19:377-388.
    • (2010) Dev. Cell , vol.19 , pp. 377-388
    • Simoes Sde, M.1
  • 67
    • 79955623603 scopus 로고    scopus 로고
    • Spatial regulation of Dia and myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis
    • Levayer R., et al. Spatial regulation of Dia and myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat. Cell Biol. 2011, 13:529-540.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 529-540
    • Levayer, R.1
  • 68
    • 0031416614 scopus 로고    scopus 로고
    • Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila
    • Jordan P., Karess R. Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila. J. Cell Biol. 1997, 139:1805-1819.
    • (1997) J. Cell Biol. , vol.139 , pp. 1805-1819
    • Jordan, P.1    Karess, R.2
  • 69
    • 0035815280 scopus 로고    scopus 로고
    • Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton
    • Winter C.G., et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 2001, 105:81-91.
    • (2001) Cell , vol.105 , pp. 81-91
    • Winter, C.G.1
  • 70
    • 0037043336 scopus 로고    scopus 로고
    • Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity
    • Royou A., et al. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol. 2002, 158:127-137.
    • (2002) J. Cell Biol. , vol.158 , pp. 127-137
    • Royou, A.1
  • 71
    • 34547573606 scopus 로고    scopus 로고
    • Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice
    • Bao J., et al. Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice. J. Biol. Chem. 2007, 282:22102-22111.
    • (2007) J. Biol. Chem. , vol.282 , pp. 22102-22111
    • Bao, J.1
  • 72
    • 77957086665 scopus 로고    scopus 로고
    • Nonmuscle myosin II isoform and domain specificity during early mouse development
    • Wang A., et al. Nonmuscle myosin II isoform and domain specificity during early mouse development. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:14645-14650.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 14645-14650
    • Wang, A.1
  • 73
    • 1642448472 scopus 로고    scopus 로고
    • Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform
    • Kovacs M., et al. Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform. J. Biol. Chem. 2003, 278:38132-38140.
    • (2003) J. Biol. Chem. , vol.278 , pp. 38132-38140
    • Kovacs, M.1
  • 74
    • 0042347443 scopus 로고    scopus 로고
    • Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance
    • Wang F., et al. Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance. J. Biol. Chem. 2003, 278:27439-27448.
    • (2003) J. Biol. Chem. , vol.278 , pp. 27439-27448
    • Wang, F.1
  • 75
    • 34547158278 scopus 로고    scopus 로고
    • Load-dependent mechanism of nonmuscle myosin 2
    • Kovacs M., et al. Load-dependent mechanism of nonmuscle myosin 2. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:9994-9999.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 9994-9999
    • Kovacs, M.1
  • 76
    • 0031711721 scopus 로고    scopus 로고
    • Cytoplasmic dynamics of myosin IIA and IIB: spatial 'sorting' of isoforms in locomoting cells
    • Kolega J. Cytoplasmic dynamics of myosin IIA and IIB: spatial 'sorting' of isoforms in locomoting cells. J. Cell Sci. 1998, 111:2085-2095.
    • (1998) J. Cell Sci. , vol.111 , pp. 2085-2095
    • Kolega, J.1
  • 77
    • 77954232331 scopus 로고    scopus 로고
    • Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens
    • Smutny M., et al. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat. Cell Biol. 2010, 12:696-702.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 696-702
    • Smutny, M.1
  • 78
    • 78650821701 scopus 로고    scopus 로고
    • Planar polarized actomyosin contractile flows control epithelial junction remodelling
    • Rauzi M., et al. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 2010, 468:1110-1114.
    • (2010) Nature , vol.468 , pp. 1110-1114
    • Rauzi, M.1
  • 79
    • 34247644614 scopus 로고    scopus 로고
    • Regulation of actin filament assembly by Arp2/3 complex and formins
    • Pollard T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 2007, 36:451-477.
    • (2007) Annu. Rev. Biophys. Biomol. Struct. , vol.36 , pp. 451-477
    • Pollard, T.D.1
  • 80
    • 13444292982 scopus 로고    scopus 로고
    • Drosophila Spire is an actin nucleation factor
    • Quinlan M.E., et al. Drosophila Spire is an actin nucleation factor. Nature 2005, 433:382-388.
    • (2005) Nature , vol.433 , pp. 382-388
    • Quinlan, M.E.1
  • 81
    • 35348869727 scopus 로고    scopus 로고
    • Cordon-bleu is an actin nucleation factor and controls neuronal morphology
    • Ahuja R., et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 2007, 131:337-350.
    • (2007) Cell , vol.131 , pp. 337-350
    • Ahuja, R.1
  • 82
    • 0038313144 scopus 로고    scopus 로고
    • ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays
    • Le Clainche C., et al. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:6337-6342.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 6337-6342
    • Le Clainche, C.1
  • 83
    • 64049091643 scopus 로고    scopus 로고
    • Cofilin dissociates Arp2/3 complex and branches from actin filaments
    • Chan C., et al. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr. Biol. 2009, 19:537-545.
    • (2009) Curr. Biol. , vol.19 , pp. 537-545
    • Chan, C.1
  • 84
    • 77953170746 scopus 로고    scopus 로고
    • GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation
    • Gandhi M., et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol. 2010, 20:861-867.
    • (2010) Curr. Biol. , vol.20 , pp. 861-867
    • Gandhi, M.1
  • 85
    • 79960917675 scopus 로고    scopus 로고
    • Unraveling the enigma: progress towards understanding the coronin family of actin regulators
    • Chan K.T., et al. Unraveling the enigma: progress towards understanding the coronin family of actin regulators. Trends Cell Biol. 2011, 21:481-488.
    • (2011) Trends Cell Biol. , vol.21 , pp. 481-488
    • Chan, K.T.1
  • 86
    • 33646386142 scopus 로고    scopus 로고
    • Stress fibers are generated by two distinct actin assembly mechanisms in motile cells
    • Hotulainen P., Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 2006, 173:383-394.
    • (2006) J. Cell Biol. , vol.173 , pp. 383-394
    • Hotulainen, P.1    Lappalainen, P.2
  • 87
    • 41549108457 scopus 로고    scopus 로고
    • Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella
    • Nemethova M., et al. Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J. Cell Biol. 2008, 180:1233-1244.
    • (2008) J. Cell Biol. , vol.180 , pp. 1233-1244
    • Nemethova, M.1
  • 88
    • 58149300219 scopus 로고    scopus 로고
    • Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts
    • Anderson T.W., et al. Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol. Biol. Cell 2008, 19:5006-5018.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5006-5018
    • Anderson, T.W.1
  • 89
    • 42749098229 scopus 로고    scopus 로고
    • Dendritic branching and homogenization of actin networks mediated by arp2/3 complex
    • Tseng Y., Wirtz D. Dendritic branching and homogenization of actin networks mediated by arp2/3 complex. Phys. Rev. Lett. 2004, 93:258104.
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 258104
    • Tseng, Y.1    Wirtz, D.2
  • 90
    • 0033160196 scopus 로고    scopus 로고
    • Cooperation between mDia1 and ROCK in Rho-induced actin reorganization
    • Watanabe N., et al. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1999, 1:136-143.
    • (1999) Nat. Cell Biol. , vol.1 , pp. 136-143
    • Watanabe, N.1
  • 91
    • 34547433610 scopus 로고    scopus 로고
    • Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis
    • Werner M., et al. Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis. Curr. Biol. 2007, 17:1286-1297.
    • (2007) Curr. Biol. , vol.17 , pp. 1286-1297
    • Werner, M.1
  • 92
    • 26444449581 scopus 로고    scopus 로고
    • Distinct pathways control recruitment and maintenance of myosin II at the cleavage furrow during cytokinesis
    • Dean S.O., et al. Distinct pathways control recruitment and maintenance of myosin II at the cleavage furrow during cytokinesis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13473-13478.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 13473-13478
    • Dean, S.O.1
  • 93
    • 48249083745 scopus 로고    scopus 로고
    • MDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells
    • Watanabe S., et al. mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells. Mol. Biol. Cell 2008, 19:2328-2338.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2328-2338
    • Watanabe, S.1
  • 94
    • 0034907213 scopus 로고    scopus 로고
    • MDia mediates Rho-regulated formation and orientation of stable microtubules
    • Palazzo A.F., et al. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 2001, 3:723-729.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 723-729
    • Palazzo, A.F.1
  • 95
    • 71449083102 scopus 로고    scopus 로고
    • Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells
    • Bertet C., et al. Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells. Development 2009, 136:4199-4212.
    • (2009) Development , vol.136 , pp. 4199-4212
    • Bertet, C.1
  • 96
    • 42549102235 scopus 로고    scopus 로고
    • Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis
    • Homem C.C., Peifer M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 2008, 135:1005-1018.
    • (2008) Development , vol.135 , pp. 1005-1018
    • Homem, C.C.1    Peifer, M.2
  • 97
    • 79952104930 scopus 로고    scopus 로고
    • Septin structure and function in yeast and beyond
    • Oh Y., Bi E. Septin structure and function in yeast and beyond. Trends Cell Biol. 2011, 21:141-148.
    • (2011) Trends Cell Biol. , vol.21 , pp. 141-148
    • Oh, Y.1    Bi, E.2
  • 98
    • 35548961325 scopus 로고    scopus 로고
    • Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases
    • Joo E., et al. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev. Cell 2007, 13:677-690.
    • (2007) Dev. Cell , vol.13 , pp. 677-690
    • Joo, E.1
  • 99
    • 34247618242 scopus 로고    scopus 로고
    • Anillin and the septins promote asymmetric ingression of the cytokinetic furrow
    • Maddox A.S., et al. Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev. Cell 2007, 12:827-835.
    • (2007) Dev. Cell , vol.12 , pp. 827-835
    • Maddox, A.S.1
  • 100
    • 58149330180 scopus 로고    scopus 로고
    • Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility
    • Tooley A.J., et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat. Cell Biol. 2009, 11:17-26.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 17-26
    • Tooley, A.J.1
  • 101
    • 38349059960 scopus 로고    scopus 로고
    • Tropomyosin-based regulation of the actin cytoskeleton in time and space
    • Gunning P., et al. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol. Rev. 2008, 88:1-35.
    • (2008) Physiol. Rev. , vol.88 , pp. 1-35
    • Gunning, P.1
  • 102
    • 4644284605 scopus 로고    scopus 로고
    • A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells
    • Bakin A.V., et al. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol. Biol. Cell 2004, 15:4682-4694.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 4682-4694
    • Bakin, A.V.1
  • 103
    • 13944273671 scopus 로고    scopus 로고
    • Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin
    • Gupton S.L., et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 2005, 168:619-631.
    • (2005) J. Cell Biol. , vol.168 , pp. 619-631
    • Gupton, S.L.1
  • 104
    • 79953794528 scopus 로고    scopus 로고
    • A molecular pathway for myosin II recruitment to stress fibers
    • Tojkander S., et al. A molecular pathway for myosin II recruitment to stress fibers. Curr. Biol. 2011, 21:539-550.
    • (2011) Curr. Biol. , vol.21 , pp. 539-550
    • Tojkander, S.1
  • 105
    • 0023864930 scopus 로고
    • Cortical flow in animal cells
    • Bray D., White J.G. Cortical flow in animal cells. Science 1988, 239:883-888.
    • (1988) Science , vol.239 , pp. 883-888
    • Bray, D.1    White, J.G.2
  • 106
    • 79959370905 scopus 로고    scopus 로고
    • Active multistage coarsening of actin networks driven by myosin motors
    • Silva M.S., et al. Active multistage coarsening of actin networks driven by myosin motors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9408-9413.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 9408-9413
    • Silva, M.S.1
  • 107
    • 0020316180 scopus 로고
    • Surface functions during mitosis. III. Quantitative analysis of ligand-receptor movement into the cleavage furrow: diffusion vs. flow
    • Koppel D.E., et al. Surface functions during mitosis. III. Quantitative analysis of ligand-receptor movement into the cleavage furrow: diffusion vs. flow. J. Cell Biol. 1982, 93:950-960.
    • (1982) J. Cell Biol. , vol.93 , pp. 950-960
    • Koppel, D.E.1
  • 108
    • 0027970208 scopus 로고
    • Single particle tracking of surface receptor movement during cell division
    • Wang Y.L., et al. Single particle tracking of surface receptor movement during cell division. J. Cell Biol. 1994, 127:963-971.
    • (1994) J. Cell Biol. , vol.127 , pp. 963-971
    • Wang, Y.L.1
  • 109
    • 0025059359 scopus 로고
    • Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments
    • Cao L.G., Wang Y.L. Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments. J. Cell Biol. 1990, 111:1905-1911.
    • (1990) J. Cell Biol. , vol.111 , pp. 1905-1911
    • Cao, L.G.1    Wang, Y.L.2
  • 110
    • 0029779538 scopus 로고    scopus 로고
    • Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion
    • DeBiasio R.L., et al. Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol. Biol. Cell 1996, 7:1259-1282.
    • (1996) Mol. Biol. Cell , vol.7 , pp. 1259-1282
    • DeBiasio, R.L.1
  • 111
    • 38749139916 scopus 로고    scopus 로고
    • Distinct pathways for the early recruitment of myosin II and actin to the cytokinetic furrow
    • Zhou M., Wang Y.L. Distinct pathways for the early recruitment of myosin II and actin to the cytokinetic furrow. Mol. Biol. Cell 2008, 19:318-326.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 318-326
    • Zhou, M.1    Wang, Y.L.2
  • 112
    • 77955712440 scopus 로고    scopus 로고
    • Determinants of myosin II cortical localization during cytokinesis
    • Uehara R., et al. Determinants of myosin II cortical localization during cytokinesis. Curr. Biol. 2010, 20:1080-1085.
    • (2010) Curr. Biol. , vol.20 , pp. 1080-1085
    • Uehara, R.1
  • 113
    • 0020614748 scopus 로고
    • On the mechanisms of cytokinesis in animal cells
    • White J.G., Borisy G.G. On the mechanisms of cytokinesis in animal cells. J. Theor. Biol. 1983, 101:289-316.
    • (1983) J. Theor. Biol. , vol.101 , pp. 289-316
    • White, J.G.1    Borisy, G.G.2
  • 114
    • 23644457501 scopus 로고    scopus 로고
    • A cytokinesis furrow is positioned by two consecutive signals
    • Bringmann H., Hyman A.A. A cytokinesis furrow is positioned by two consecutive signals. Nature 2005, 436:731-734.
    • (2005) Nature , vol.436 , pp. 731-734
    • Bringmann, H.1    Hyman, A.A.2
  • 115
    • 0037436506 scopus 로고    scopus 로고
    • Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor
    • Straight A.F., et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 2003, 299:1743-1747.
    • (2003) Science , vol.299 , pp. 1743-1747
    • Straight, A.F.1
  • 116
    • 49649109404 scopus 로고    scopus 로고
    • Dual role for microtubules in regulating cortical contractility during cytokinesis
    • Murthy K., Wadsworth P. Dual role for microtubules in regulating cortical contractility during cytokinesis. J. Cell Sci. 2008, 121:2350-2359.
    • (2008) J. Cell Sci. , vol.121 , pp. 2350-2359
    • Murthy, K.1    Wadsworth, P.2
  • 117
    • 68849132714 scopus 로고    scopus 로고
    • Hydrodynamics of cellular cortical flows and the formation of contractile rings
    • Salbreux G., et al. Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys. Rev. Lett. 2009, 103:058102.
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 058102
    • Salbreux, G.1
  • 118
    • 18044368530 scopus 로고    scopus 로고
    • Myosin-II-dependent localization and dynamics of F-actin during cytokinesis
    • Murthy K., Wadsworth P. Myosin-II-dependent localization and dynamics of F-actin during cytokinesis. Curr. Biol. 2005, 15:724-731.
    • (2005) Curr. Biol. , vol.15 , pp. 724-731
    • Murthy, K.1    Wadsworth, P.2
  • 119
    • 18044363909 scopus 로고    scopus 로고
    • Cortical actin turnover during cytokinesis requires myosin II
    • Guha M., et al. Cortical actin turnover during cytokinesis requires myosin II. Curr. Biol. 2005, 15:732-736.
    • (2005) Curr. Biol. , vol.15 , pp. 732-736
    • Guha, M.1
  • 120
    • 0042672950 scopus 로고    scopus 로고
    • Activity of Rho-family GTPases during cell division as visualized with FRET-based probes
    • Yoshizaki H., et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 2003, 162:223-232.
    • (2003) J. Cell Biol. , vol.162 , pp. 223-232
    • Yoshizaki, H.1
  • 121
    • 0033615966 scopus 로고    scopus 로고
    • Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior
    • Sander E.E., et al. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 1999, 147:1009-1022.
    • (1999) J. Cell Biol. , vol.147 , pp. 1009-1022
    • Sander, E.E.1
  • 122
    • 69949104482 scopus 로고    scopus 로고
    • A genetically encoded photoactivatable Rac controls the motility of living cells
    • Wu Y.I., et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009, 461:104-108.
    • (2009) Nature , vol.461 , pp. 104-108
    • Wu, Y.I.1
  • 123
    • 0036898609 scopus 로고    scopus 로고
    • RAC2 GTPase deficiency and myeloid cell dysfunction in human and mouse
    • Gu Y., Williams D.A. RAC2 GTPase deficiency and myeloid cell dysfunction in human and mouse. J. Pediatr. Hematol. Oncol. 2002, 24:791-794.
    • (2002) J. Pediatr. Hematol. Oncol. , vol.24 , pp. 791-794
    • Gu, Y.1    Williams, D.A.2
  • 124
    • 0035195553 scopus 로고    scopus 로고
    • Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis
    • Lundquist E.A., et al. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 2001, 128:4475-4488.
    • (2001) Development , vol.128 , pp. 4475-4488
    • Lundquist, E.A.1
  • 125
    • 0037187546 scopus 로고    scopus 로고
    • Rac function and regulation during Drosophila development
    • Hakeda-Suzuki S., et al. Rac function and regulation during Drosophila development. Nature 2002, 416:438-442.
    • (2002) Nature , vol.416 , pp. 438-442
    • Hakeda-Suzuki, S.1
  • 126
    • 77955489876 scopus 로고    scopus 로고
    • Cytoskeletal cross-linking and bundling in motor-independent contraction
    • Sun S.X., et al. Cytoskeletal cross-linking and bundling in motor-independent contraction. Curr. Biol. 2010, 20:R649-R654.
    • (2010) Curr. Biol. , vol.20
    • Sun, S.X.1
  • 127
    • 77957364208 scopus 로고    scopus 로고
    • Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows
    • Mayer M., et al. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 2010, 467:617-621.
    • (2010) Nature , vol.467 , pp. 617-621
    • Mayer, M.1
  • 128
    • 0033974762 scopus 로고    scopus 로고
    • Microtubule-actomyosin interactions in cortical flow and cytokinesis
    • Mandato C.A., et al. Microtubule-actomyosin interactions in cortical flow and cytokinesis. Cell Motil. Cytoskeleton 2000, 45:87-92.
    • (2000) Cell Motil. Cytoskeleton , vol.45 , pp. 87-92
    • Mandato, C.A.1
  • 129
    • 0030870182 scopus 로고    scopus 로고
    • Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes
    • Canman J.C., Bement W.M. Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes. J. Cell Sci. 1997, 110(Pt 16):1907-1917.
    • (1997) J. Cell Sci. , vol.110 , Issue.PATR 16 , pp. 1907-1917
    • Canman, J.C.1    Bement, W.M.2
  • 130
    • 0033836515 scopus 로고    scopus 로고
    • Analysis of cortical flow models in vivo
    • Benink H.A., et al. Analysis of cortical flow models in vivo. Mol. Biol. Cell 2000, 11:2553-2563.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 2553-2563
    • Benink, H.A.1
  • 131
    • 56149100878 scopus 로고    scopus 로고
    • An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning
    • Odell G.M., Foe V.E. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning. J. Cell Biol. 2008, 183:471-483.
    • (2008) J. Cell Biol. , vol.183 , pp. 471-483
    • Odell, G.M.1    Foe, V.E.2
  • 132
    • 80054019114 scopus 로고    scopus 로고
    • Wound repair: toward understanding and integration of single-cell and multicellular wound responses
    • Sonnemann K.J., Bement W.M. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 2011, 27:237-263.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 237-263
    • Sonnemann, K.J.1    Bement, W.M.2
  • 133
    • 0035921421 scopus 로고    scopus 로고
    • Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds
    • Mandato C.A., Bement W.M. Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J. Cell Biol. 2001, 154:785-797.
    • (2001) J. Cell Biol. , vol.154 , pp. 785-797
    • Mandato, C.A.1    Bement, W.M.2
  • 134
    • 13444311711 scopus 로고    scopus 로고
    • Concentric zones of active RhoA and Cdc42 around single cell wounds
    • Benink H.A., Bement W.M. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 2005, 168:429-439.
    • (2005) J. Cell Biol. , vol.168 , pp. 429-439
    • Benink, H.A.1    Bement, W.M.2
  • 135
    • 0037672195 scopus 로고    scopus 로고
    • Actomyosin transports microtubules and microtubules control actomyosin recruitment during Xenopus oocyte wound healing
    • Mandato C.A., Bement W.M. Actomyosin transports microtubules and microtubules control actomyosin recruitment during Xenopus oocyte wound healing. Curr. Biol. 2003, 13:1096-1105.
    • (2003) Curr. Biol. , vol.13 , pp. 1096-1105
    • Mandato, C.A.1    Bement, W.M.2
  • 136
    • 0037459075 scopus 로고    scopus 로고
    • Cellular motility driven by assembly and disassembly of actin filaments
    • Pollard T.D., Borisy G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003, 112:453-465.
    • (2003) Cell , vol.112 , pp. 453-465
    • Pollard, T.D.1    Borisy, G.G.2
  • 137
    • 77952687450 scopus 로고    scopus 로고
    • Myosin II contributes to cell-scale actin network treadmilling through network disassembly
    • Wilson C.A., et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 2010, 465:373-377.
    • (2010) Nature , vol.465 , pp. 373-377
    • Wilson, C.A.1
  • 138
    • 4544309783 scopus 로고    scopus 로고
    • Two distinct actin networks drive the protrusion of migrating cells
    • Ponti A., et al. Two distinct actin networks drive the protrusion of migrating cells. Science 2004, 305:1782-1786.
    • (2004) Science , vol.305 , pp. 1782-1786
    • Ponti, A.1
  • 139
    • 3042831741 scopus 로고    scopus 로고
    • Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy
    • Vallotton P., et al. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:9660-9665.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 9660-9665
    • Vallotton, P.1
  • 140
    • 1542380678 scopus 로고    scopus 로고
    • Periodic lamellipodial contractions correlate with rearward actin waves
    • Giannone G., et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 2004, 116:431-443.
    • (2004) Cell , vol.116 , pp. 431-443
    • Giannone, G.1
  • 141
    • 33745245989 scopus 로고    scopus 로고
    • Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration
    • Gupton S.L., Waterman-Storer C.M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 2006, 125:1361-1374.
    • (2006) Cell , vol.125 , pp. 1361-1374
    • Gupton, S.L.1    Waterman-Storer, C.M.2
  • 142
    • 33846672361 scopus 로고    scopus 로고
    • Lamellipodial actin mechanically links myosin activity with adhesion-site formation
    • Giannone G., et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 2007, 128:561-575.
    • (2007) Cell , vol.128 , pp. 561-575
    • Giannone, G.1
  • 143
    • 79953325280 scopus 로고    scopus 로고
    • A role for actin arcs in the leading-edge advance of migrating cells
    • Burnette D.T., et al. A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 2011, 13:371-382.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 371-382
    • Burnette, D.T.1
  • 144
    • 57049151271 scopus 로고    scopus 로고
    • Fluctuations of intracellular forces during cell protrusion
    • Ji L., et al. Fluctuations of intracellular forces during cell protrusion. Nat. Cell Biol. 2008, 10:1393-1400.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1393-1400
    • Ji, L.1
  • 145
    • 0028818253 scopus 로고
    • Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles
    • Verkhovsky A.B., et al. Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J. Cell Biol. 1995, 131:989-1002.
    • (1995) J. Cell Biol. , vol.131 , pp. 989-1002
    • Verkhovsky, A.B.1
  • 146
    • 40249118452 scopus 로고    scopus 로고
    • Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front
    • Koestler S.A., et al. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol. 2008, 10:306-313.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 306-313
    • Koestler, S.A.1
  • 147
    • 33750320965 scopus 로고    scopus 로고
    • Dissection of amoeboid movement into two mechanically distinct modes
    • Yoshida K., Soldati T. Dissection of amoeboid movement into two mechanically distinct modes. J. Cell Sci. 2006, 119:3833-3844.
    • (2006) J. Cell Sci. , vol.119 , pp. 3833-3844
    • Yoshida, K.1    Soldati, T.2
  • 148
    • 50149095564 scopus 로고    scopus 로고
    • Blebs lead the way: how to migrate without lamellipodia
    • Charras G., Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 2008, 9:730-736.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 730-736
    • Charras, G.1    Paluch, E.2
  • 149
    • 33750491282 scopus 로고    scopus 로고
    • Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow
    • Blaser H., et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 2006, 11:613-627.
    • (2006) Dev. Cell , vol.11 , pp. 613-627
    • Blaser, H.1
  • 150
    • 33750701767 scopus 로고    scopus 로고
    • Reassembly of contractile actin cortex in cell blebs
    • Charras G.T., et al. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 2006, 175:477-490.
    • (2006) J. Cell Biol. , vol.175 , pp. 477-490
    • Charras, G.T.1
  • 151
    • 19644375086 scopus 로고    scopus 로고
    • Non-equilibration of hydrostatic pressure in blebbing cells
    • Charras G.T., et al. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 2005, 435:365-369.
    • (2005) Nature , vol.435 , pp. 365-369
    • Charras, G.T.1
  • 152
    • 23244458089 scopus 로고    scopus 로고
    • Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments
    • Paluch E., et al. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 2005, 89:724-733.
    • (2005) Biophys. J. , vol.89 , pp. 724-733
    • Paluch, E.1
  • 153
    • 33845328829 scopus 로고    scopus 로고
    • Cracking up: symmetry breaking in cellular systems
    • Paluch E., et al. Cracking up: symmetry breaking in cellular systems. J. Cell Biol. 2006, 175:687-692.
    • (2006) J. Cell Biol. , vol.175 , pp. 687-692
    • Paluch, E.1
  • 154
    • 77957227956 scopus 로고    scopus 로고
    • A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo
    • Kardash E., et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol. 2010, 12:47-53.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 47-53
    • Kardash, E.1
  • 155
    • 33744902873 scopus 로고    scopus 로고
    • Blebbing of Dictyostelium cells in response to chemoattractant
    • Langridge P.D., Kay R.R. Blebbing of Dictyostelium cells in response to chemoattractant. Exp. Cell Res. 2006, 312:2009-2017.
    • (2006) Exp. Cell Res. , vol.312 , pp. 2009-2017
    • Langridge, P.D.1    Kay, R.R.2
  • 156
    • 0006029624 scopus 로고
    • The mechanical characteristics of insect fibrillar muscle
    • North-Holland Publishing Co, R.T. Tregear (Ed.)
    • Pringle J.W.S. The mechanical characteristics of insect fibrillar muscle. Insect Flight Muscle 1977, 177-196. North-Holland Publishing Co. R.T. Tregear (Ed.).
    • (1977) Insect Flight Muscle , pp. 177-196
    • Pringle, J.W.S.1
  • 157
    • 0029862945 scopus 로고    scopus 로고
    • Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions
    • Yasuda K., et al. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys. J. 1996, 70:1823-1829.
    • (1996) Biophys. J. , vol.70 , pp. 1823-1829
    • Yasuda, K.1
  • 158
    • 79954415785 scopus 로고    scopus 로고
    • Molecular motors as an auto-oscillator
    • Ishiwata S., et al. Molecular motors as an auto-oscillator. HFSP J. 2010, 4:100-104.
    • (2010) HFSP J. , vol.4 , pp. 100-104
    • Ishiwata, S.1
  • 159
    • 0043117148 scopus 로고
    • Cooperative molecular motors
    • Julicher F., Prost J. Cooperative molecular motors. Phys. Rev. Lett. 1995, 75:2618-2621.
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 2618-2621
    • Julicher, F.1    Prost, J.2
  • 160
    • 0000946497 scopus 로고    scopus 로고
    • Spontaneous oscillations of collective molecular motors
    • Jülicher F., Prost J. Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett. 1997, 78:4510-4513.
    • (1997) Phys. Rev. Lett. , vol.78 , pp. 4510-4513
    • Jülicher, F.1    Prost, J.2
  • 161
    • 66949117450 scopus 로고    scopus 로고
    • Collective oscillations of processive molecular motors
    • Campàs O., et al. Collective oscillations of processive molecular motors. Biophys. Rev. Lett. 2009, 4:163-178.
    • (2009) Biophys. Rev. Lett. , vol.4 , pp. 163-178
    • Campàs, O.1
  • 162
    • 70349857816 scopus 로고    scopus 로고
    • Spontaneous oscillations of a minimal actomyosin system under elastic loading
    • Placais P.Y., et al. Spontaneous oscillations of a minimal actomyosin system under elastic loading. Phys. Rev. Lett. 2009, 103:158102.
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 158102
    • Placais, P.Y.1
  • 163
    • 65949114647 scopus 로고    scopus 로고
    • Self-organization of dynein motors generates meiotic nuclear oscillations
    • Vogel S.K., et al. Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 2009, 7:e1000087.
    • (2009) PLoS Biol. , vol.7
    • Vogel, S.K.1
  • 164
    • 18044388732 scopus 로고    scopus 로고
    • Theory of mitotic spindle oscillations
    • Grill S.W., et al. Theory of mitotic spindle oscillations. Phys. Rev. Lett. 2005, 94:108104.
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 108104
    • Grill, S.W.1
  • 165
    • 33751117796 scopus 로고    scopus 로고
    • Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators
    • Pecreaux J., et al. Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr. Biol. 2006, 16:2111-2122.
    • (2006) Curr. Biol. , vol.16 , pp. 2111-2122
    • Pecreaux, J.1
  • 166
    • 34247541603 scopus 로고    scopus 로고
    • Cortical microtubule contacts position the spindle in C. elegans embryos
    • Kozlowski C., et al. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 2007, 129:499-510.
    • (2007) Cell , vol.129 , pp. 499-510
    • Kozlowski, C.1
  • 167
    • 36549035377 scopus 로고    scopus 로고
    • A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent
    • Haviv L., et al. A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent. J. Mol. Biol. 2008, 375:325-330.
    • (2008) J. Mol. Biol. , vol.375 , pp. 325-330
    • Haviv, L.1
  • 168
    • 33644775671 scopus 로고    scopus 로고
    • Myosin II functions in actin-bundle turnover in neuronal growth cones
    • Medeiros N.A., et al. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 2006, 8:215-226.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 215-226
    • Medeiros, N.A.1
  • 169
    • 38049125592 scopus 로고    scopus 로고
    • Shape oscillations of non-adhering fibroblast cells
    • Salbreux G., et al. Shape oscillations of non-adhering fibroblast cells. Phys. Biol. 2007, 4:268-284.
    • (2007) Phys. Biol. , vol.4 , pp. 268-284
    • Salbreux, G.1
  • 170
    • 45849140886 scopus 로고    scopus 로고
    • Mechanical and biochemical modeling of cortical oscillations in spreading cells
    • Kapustina M., et al. Mechanical and biochemical modeling of cortical oscillations in spreading cells. Biophys. J. 2008, 94:4605-4620.
    • (2008) Biophys. J. , vol.94 , pp. 4605-4620
    • Kapustina, M.1
  • 171
    • 58149302947 scopus 로고    scopus 로고
    • Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells
    • Nam J.H., Fettiplace R. Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells. Biophys. J. 2008, 95:4948-4962.
    • (2008) Biophys. J. , vol.95 , pp. 4948-4962
    • Nam, J.H.1    Fettiplace, R.2
  • 172
    • 0038614902 scopus 로고    scopus 로고
    • Spontaneous oscillation by hair bundles of the bullfrog's sacculus
    • Martin P., et al. Spontaneous oscillation by hair bundles of the bullfrog's sacculus. J. Neurosci. 2003, 23:4533-4548.
    • (2003) J. Neurosci. , vol.23 , pp. 4533-4548
    • Martin, P.1
  • 173
    • 69949185998 scopus 로고    scopus 로고
    • Coordination of Rho GTPase activities during cell protrusion
    • Machacek M., et al. Coordination of Rho GTPase activities during cell protrusion. Nature 2009, 461:99-103.
    • (2009) Nature , vol.461 , pp. 99-103
    • Machacek, M.1
  • 174
    • 0037043341 scopus 로고    scopus 로고
    • Effects of cell tension on the small GTPase Rac
    • Katsumi A., et al. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 2002, 158:153-164.
    • (2002) J. Cell Biol. , vol.158 , pp. 153-164
    • Katsumi, A.1
  • 175
    • 70549098542 scopus 로고    scopus 로고
    • Cytoskeletal control of growth and cell fate switching
    • Mammoto A., Ingber D.E. Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol. 2009, 21:864-870.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 864-870
    • Mammoto, A.1    Ingber, D.E.2
  • 176
    • 79957884622 scopus 로고    scopus 로고
    • Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells
    • Tkachenko E., et al. Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat. Cell Biol. 2011, 13:660-667.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 660-667
    • Tkachenko, E.1
  • 177
    • 77951234490 scopus 로고    scopus 로고
    • Pulsation and stabilization: contractile forces that underlie morphogenesis
    • Martin A.C. Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev. Biol. 2010, 341:114-125.
    • (2010) Dev. Biol. , vol.341 , pp. 114-125
    • Martin, A.C.1
  • 178
    • 79960304076 scopus 로고    scopus 로고
    • Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells
    • Fernandez-Gonzalez R., Zallen J.A. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells. Phys. Biol. 2011, 8:045005.
    • (2011) Phys. Biol. , vol.8 , pp. 045005
    • Fernandez-Gonzalez, R.1    Zallen, J.A.2
  • 179
    • 79960296387 scopus 로고    scopus 로고
    • A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension
    • Sawyer J.K., et al. A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol. Biol. Cell 2011, 22:2491-2508.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 2491-2508
    • Sawyer, J.K.1
  • 180
    • 0034678354 scopus 로고    scopus 로고
    • Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila
    • Kiehart D.P., et al. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 2000, 149:471-490.
    • (2000) J. Cell Biol. , vol.149 , pp. 471-490
    • Kiehart, D.P.1
  • 181
    • 29044448970 scopus 로고    scopus 로고
    • Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure
    • Franke J.D., et al. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr. Biol. 2005, 15:2208-2221.
    • (2005) Curr. Biol. , vol.15 , pp. 2208-2221
    • Franke, J.D.1
  • 182
    • 67549147020 scopus 로고    scopus 로고
    • Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure
    • Solon J., et al. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 2009, 137:1331-1342.
    • (2009) Cell , vol.137 , pp. 1331-1342
    • Solon, J.1
  • 183
    • 77952132991 scopus 로고    scopus 로고
    • The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila
    • David D.J., et al. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 2010, 137:1645-1655.
    • (2010) Development , vol.137 , pp. 1645-1655
    • David, D.J.1
  • 184
    • 77955765046 scopus 로고    scopus 로고
    • Cytoskeletal dynamics and supracellular organization of cell shape fluctuations during dorsal closure
    • Blanchard G.B., et al. Cytoskeletal dynamics and supracellular organization of cell shape fluctuations during dorsal closure. Development 2010, 137:2743-2752.
    • (2010) Development , vol.137 , pp. 2743-2752
    • Blanchard, G.B.1
  • 185
    • 78649807120 scopus 로고    scopus 로고
    • Tissue elongation requires oscillating contractions of a basal actomyosin network
    • He L., et al. Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat. Cell Biol. 2010, 12:1133-1142.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1133-1142
    • He, L.1
  • 186
    • 79957454708 scopus 로고    scopus 로고
    • Structure formation in active networks
    • Kohler S., et al. Structure formation in active networks. Nat. Mater. 2011, 10:462-468.
    • (2011) Nat. Mater. , vol.10 , pp. 462-468
    • Kohler, S.1
  • 187
    • 77949417549 scopus 로고    scopus 로고
    • Integration of contractile forces during tissue invagination
    • Martin A.C., et al. Integration of contractile forces during tissue invagination. J. Cell Biol. 2010, 188:735-749.
    • (2010) J. Cell Biol. , vol.188 , pp. 735-749
    • Martin, A.C.1
  • 188
    • 80052054346 scopus 로고    scopus 로고
    • Polar actomyosin contractility destabilizes the position of the cytokinetic furrow
    • Sedzinski J., et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 2011, 476:462-466.
    • (2011) Nature , vol.476 , pp. 462-466
    • Sedzinski, J.1
  • 189
    • 70349245220 scopus 로고    scopus 로고
    • Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos
    • Pouille P.A., et al. Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal. 2009, 2:ra16.
    • (2009) Sci. Signal. , vol.2
    • Pouille, P.A.1
  • 190
    • 23844466646 scopus 로고    scopus 로고
    • A contractile nuclear actin network drives chromosome congression in oocytes
    • Lenart P., et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 2005, 436:812-818.
    • (2005) Nature , vol.436 , pp. 812-818
    • Lenart, P.1
  • 191
    • 79953770641 scopus 로고    scopus 로고
    • Intracellular transport by an anchored homogeneously contracting f-actin meshwork
    • Mori M., et al. Intracellular transport by an anchored homogeneously contracting f-actin meshwork. Curr. Biol. 2011, 21:606-611.
    • (2011) Curr. Biol. , vol.21 , pp. 606-611
    • Mori, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.