-
1
-
-
43149086620
-
A quantitative analysis of contractility in active cytoskeletal protein networks
-
Bendix P.M., et al. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J. 2008, 94:3126-3136.
-
(2008)
Biophys. J.
, vol.94
, pp. 3126-3136
-
-
Bendix, P.M.1
-
2
-
-
70349339250
-
An active biopolymer network controlled by molecular motors
-
Koenderink G.H., et al. An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15192-15197.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 15192-15197
-
-
Koenderink, G.H.1
-
3
-
-
70350454867
-
Non-muscle myosin II takes centre stage in cell adhesion and migration
-
Vicente-Manzanares M., et al. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 2009, 10:778-790.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 778-790
-
-
Vicente-Manzanares, M.1
-
4
-
-
4544316472
-
Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo
-
Munro E., et al. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell 2004, 7:413-424.
-
(2004)
Dev. Cell
, vol.7
, pp. 413-424
-
-
Munro, E.1
-
5
-
-
0034677906
-
Myosins: a diverse superfamily
-
Sellers J.R. Myosins: a diverse superfamily. Biochim. Biophys. Acta 2000, 1496:3-22.
-
(2000)
Biochim. Biophys. Acta
, vol.1496
, pp. 3-22
-
-
Sellers, J.R.1
-
6
-
-
0027226230
-
Structure of the actin-myosin complex and its implications for muscle contraction
-
Rayment I., et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 1993, 261:58-65.
-
(1993)
Science
, vol.261
, pp. 58-65
-
-
Rayment, I.1
-
7
-
-
0028261701
-
Single myosin molecule mechanics: piconewton forces and nanometre steps
-
Finer J.T., et al. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 1994, 368:113-119.
-
(1994)
Nature
, vol.368
, pp. 113-119
-
-
Finer, J.T.1
-
8
-
-
0016826285
-
Human platelet myosin. II. In vitro assembly and structure of myosin filaments
-
Niederman R., Pollard T.D. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J. Cell Biol. 1975, 67:72-92.
-
(1975)
J. Cell Biol.
, vol.67
, pp. 72-92
-
-
Niederman, R.1
Pollard, T.D.2
-
10
-
-
2542627629
-
Elastic behavior of cross-linked and bundled actin networks
-
Gardel M.L., et al. Elastic behavior of cross-linked and bundled actin networks. Science 2004, 304:1301-1305.
-
(2004)
Science
, vol.304
, pp. 1301-1305
-
-
Gardel, M.L.1
-
11
-
-
32344453990
-
Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells
-
Gardel M.L., et al. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:1762-1767.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 1762-1767
-
-
Gardel, M.L.1
-
12
-
-
0023091231
-
Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate
-
Sato M., et al. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. Nature 1987, 325:828-830.
-
(1987)
Nature
, vol.325
, pp. 828-830
-
-
Sato, M.1
-
13
-
-
85047699197
-
Active fluidization of polymer networks through molecular motors
-
Humphrey D., et al. Active fluidization of polymer networks through molecular motors. Nature 2002, 416:413-416.
-
(2002)
Nature
, vol.416
, pp. 413-416
-
-
Humphrey, D.1
-
15
-
-
51649089157
-
Transient binding and dissipation in cross-linked actin networks
-
Lieleg O., et al. Transient binding and dissipation in cross-linked actin networks. Phys. Rev. Lett. 2008, 101:108101.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 108101
-
-
Lieleg, O.1
-
16
-
-
58049220350
-
Mechanotransduction in development: a growing role for contractility
-
Wozniak M.A., Chen C.S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 2009, 10:34-43.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 34-43
-
-
Wozniak, M.A.1
Chen, C.S.2
-
17
-
-
21744445075
-
Regulation of myosin II during cytokinesis in higher eukaryotes
-
Matsumura F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol. 2005, 15:371-377.
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 371-377
-
-
Matsumura, F.1
-
18
-
-
0020678721
-
Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules
-
Craig R., et al. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 1983, 302:436-439.
-
(1983)
Nature
, vol.302
, pp. 436-439
-
-
Craig, R.1
-
19
-
-
47049110451
-
Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells
-
Jung H.S., et al. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell 2008, 19:3234-3242.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3234-3242
-
-
Jung, H.S.1
-
20
-
-
0027372314
-
Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo
-
Egelhoff T.T., et al. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 1993, 75:363-371.
-
(1993)
Cell
, vol.75
, pp. 363-371
-
-
Egelhoff, T.T.1
-
21
-
-
24344452910
-
Multiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium
-
Yumura S., et al. Multiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium. Mol. Biol. Cell 2005, 16:4256-4266.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4256-4266
-
-
Yumura, S.1
-
22
-
-
56149121708
-
Multiple mechanisms for accumulation of myosin II filaments at the equator during cytokinesis
-
Yumura S., et al. Multiple mechanisms for accumulation of myosin II filaments at the equator during cytokinesis. Traffic 2008, 9:2089-2099.
-
(2008)
Traffic
, vol.9
, pp. 2089-2099
-
-
Yumura, S.1
-
23
-
-
0032539586
-
Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites
-
Murakami N., et al. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites. Biochemistry 1998, 37:1989-2003.
-
(1998)
Biochemistry
, vol.37
, pp. 1989-2003
-
-
Murakami, N.1
-
24
-
-
0034687146
-
Two distinct mechanisms for regulation of nonmuscle myosin assembly via the heavy chain: phosphorylation for MIIB and mts 1 binding for MIIA
-
Murakami N., et al. Two distinct mechanisms for regulation of nonmuscle myosin assembly via the heavy chain: phosphorylation for MIIB and mts 1 binding for MIIA. Biochemistry 2000, 39:11441-11451.
-
(2000)
Biochemistry
, vol.39
, pp. 11441-11451
-
-
Murakami, N.1
-
25
-
-
33644865885
-
Protein kinase Cgamma regulates myosin IIB phosphorylation, cellular localization, and filament assembly
-
Rosenberg M., Ravid S. Protein kinase Cgamma regulates myosin IIB phosphorylation, cellular localization, and filament assembly. Mol. Biol. Cell 2006, 17:1364-1374.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1364-1374
-
-
Rosenberg, M.1
Ravid, S.2
-
26
-
-
0014750098
-
The locomotion of fibroblasts in culture. I. Movements of the leading edge
-
Abercrombie M., et al. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp. Cell Res. 1970, 59:393-398.
-
(1970)
Exp. Cell Res.
, vol.59
, pp. 393-398
-
-
Abercrombie, M.1
-
27
-
-
0030045346
-
Cell migration: a physically integrated molecular process
-
Lauffenburger D.A., Horwitz A.F. Cell migration: a physically integrated molecular process. Cell 1996, 84:359-369.
-
(1996)
Cell
, vol.84
, pp. 359-369
-
-
Lauffenburger, D.A.1
Horwitz, A.F.2
-
29
-
-
50649090264
-
Mechanisms of actin stress fibre assembly
-
Naumanen P., et al. Mechanisms of actin stress fibre assembly. J. Microsc. 2008, 231:446-454.
-
(2008)
J. Microsc.
, vol.231
, pp. 446-454
-
-
Naumanen, P.1
-
30
-
-
0026778133
-
The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors
-
Ridley A.J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992, 70:389-399.
-
(1992)
Cell
, vol.70
, pp. 389-399
-
-
Ridley, A.J.1
Hall, A.2
-
31
-
-
0029789678
-
The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton
-
Leung T., et al. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 1996, 16:5313-5327.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 5313-5327
-
-
Leung, T.1
-
32
-
-
33646179573
-
Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics
-
Kumar S., et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 2006, 90:3762-3773.
-
(2006)
Biophys. J.
, vol.90
, pp. 3762-3773
-
-
Kumar, S.1
-
33
-
-
36249024229
-
Cytokinesis: placing and making the final cut
-
Barr F.A., Gruneberg U. Cytokinesis: placing and making the final cut. Cell 2007, 131:847-860.
-
(2007)
Cell
, vol.131
, pp. 847-860
-
-
Barr, F.A.1
Gruneberg, U.2
-
34
-
-
3142712982
-
Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac
-
D'Avino P.P., et al. Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. J. Cell Biol. 2004, 166:61-71.
-
(2004)
J. Cell Biol.
, vol.166
, pp. 61-71
-
-
D'Avino, P.P.1
-
35
-
-
6344274982
-
Drosophila citron kinase is required for the final steps of cytokinesis
-
Naim V., et al. Drosophila citron kinase is required for the final steps of cytokinesis. Mol. Biol. Cell 2004, 15:5053-5063.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 5053-5063
-
-
Naim, V.1
-
36
-
-
36248988887
-
Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation
-
Dean S.O., Spudich J.A. Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation. PLoS ONE 2006, 1:e131.
-
(2006)
PLoS ONE
, vol.1
-
-
Dean, S.O.1
Spudich, J.A.2
-
37
-
-
31944434665
-
KIF14 and citron kinase act together to promote efficient cytokinesis
-
Gruneberg U., et al. KIF14 and citron kinase act together to promote efficient cytokinesis. J. Cell Biol. 2006, 172:363-372.
-
(2006)
J. Cell Biol.
, vol.172
, pp. 363-372
-
-
Gruneberg, U.1
-
38
-
-
0033615977
-
Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo
-
Kawano Y., et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 1999, 147:1023-1038.
-
(1999)
J. Cell Biol.
, vol.147
, pp. 1023-1038
-
-
Kawano, Y.1
-
39
-
-
22244473991
-
A microtubule-dependent zone of active RhoA during cleavage plane specification
-
Bement W.M., et al. A microtubule-dependent zone of active RhoA during cleavage plane specification. J. Cell Biol. 2005, 170:91-101.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 91-101
-
-
Bement, W.M.1
-
40
-
-
0027509362
-
Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI)
-
Kishi K., et al. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J. Cell Biol. 1993, 120:1187-1195.
-
(1993)
J. Cell Biol.
, vol.120
, pp. 1187-1195
-
-
Kishi, K.1
-
41
-
-
0031037187
-
A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos
-
Drechsel D.N., et al. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 1997, 7:12-23.
-
(1997)
Curr. Biol.
, vol.7
, pp. 12-23
-
-
Drechsel, D.N.1
-
42
-
-
0037069690
-
Rho GTPases in cell biology
-
Etienne-Manneville S., Hall A. Rho GTPases in cell biology. Nature 2002, 420:629-635.
-
(2002)
Nature
, vol.420
, pp. 629-635
-
-
Etienne-Manneville, S.1
Hall, A.2
-
43
-
-
23944499922
-
An ECT2-centralspindlin complex regulates the localization and function of RhoA
-
Yuce O., et al. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 2005, 170:571-582.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 571-582
-
-
Yuce, O.1
-
44
-
-
0037244352
-
A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis
-
Somers W.G., Saint R. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev. Cell 2003, 4:29-39.
-
(2003)
Dev. Cell
, vol.4
, pp. 29-39
-
-
Somers, W.G.1
Saint, R.2
-
45
-
-
28244444494
-
Cytokinesis: welcome to the Rho zone
-
Piekny A., et al. Cytokinesis: welcome to the Rho zone. Trends Cell Biol. 2005, 15:651-658.
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 651-658
-
-
Piekny, A.1
-
46
-
-
66249092744
-
Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation
-
Wolfe B.A., et al. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol. 2009, 7:e1000110.
-
(2009)
PLoS Biol.
, vol.7
-
-
Wolfe, B.A.1
-
47
-
-
42649123661
-
Epithelial morphogenesis in embryos: asymmetries, motors and brakes
-
Quintin S., et al. Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet. 2008, 24:221-230.
-
(2008)
Trends Genet.
, vol.24
, pp. 221-230
-
-
Quintin, S.1
-
48
-
-
33745625858
-
Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis
-
Simoes S., et al. Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development 2006, 133:4257-4267.
-
(2006)
Development
, vol.133
, pp. 4257-4267
-
-
Simoes, S.1
-
49
-
-
78649290482
-
Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination
-
Sherrard K., et al. Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr. Biol. 2010, 20:1499-1510.
-
(2010)
Curr. Biol.
, vol.20
, pp. 1499-1510
-
-
Sherrard, K.1
-
50
-
-
0031443277
-
The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation
-
Barrett K., et al. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 1997, 91:905-915.
-
(1997)
Cell
, vol.91
, pp. 905-915
-
-
Barrett, K.1
-
51
-
-
0031965218
-
DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila
-
Hacker U., Perrimon N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 1998, 12:274-284.
-
(1998)
Genes Dev.
, vol.12
, pp. 274-284
-
-
Hacker, U.1
Perrimon, N.2
-
52
-
-
27144483942
-
Folded gastrulation, cell shape change and the control of myosin localization
-
Dawes-Hoang R.E., et al. folded gastrulation, cell shape change and the control of myosin localization. Development 2005, 132:4165-4178.
-
(2005)
Development
, vol.132
, pp. 4165-4178
-
-
Dawes-Hoang, R.E.1
-
53
-
-
58749084302
-
Pulsed contractions of an actin-myosin network drive apical constriction
-
Martin A.C., et al. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 2009, 457:495-499.
-
(2009)
Nature
, vol.457
, pp. 495-499
-
-
Martin, A.C.1
-
54
-
-
33846618654
-
Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2
-
Kolsch V., et al. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 2007, 315:384-386.
-
(2007)
Science
, vol.315
, pp. 384-386
-
-
Kolsch, V.1
-
55
-
-
6944252346
-
Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner
-
Rogers S.L., et al. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 2004, 14:1827-1833.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1827-1833
-
-
Rogers, S.L.1
-
56
-
-
0033601076
-
Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice
-
Hildebrand J.D., Soriano P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 1999, 99:485-497.
-
(1999)
Cell
, vol.99
, pp. 485-497
-
-
Hildebrand, J.D.1
Soriano, P.2
-
57
-
-
0346403360
-
Shroom induces apical constriction and is required for hingepoint formation during neural tube closure
-
Haigo S.L., et al. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 2003, 13:2125-2137.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2125-2137
-
-
Haigo, S.L.1
-
58
-
-
29244449302
-
Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network
-
Hildebrand J.D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 2005, 118:5191-5203.
-
(2005)
J. Cell Sci.
, vol.118
, pp. 5191-5203
-
-
Hildebrand, J.D.1
-
59
-
-
44449176536
-
Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling
-
Nishimura T., Takeichi M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 2008, 135:1493-1502.
-
(2008)
Development
, vol.135
, pp. 1493-1502
-
-
Nishimura, T.1
Takeichi, M.2
-
60
-
-
0028218180
-
Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes
-
Irvine K.D., Wieschaus E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 1994, 120:827-841.
-
(1994)
Development
, vol.120
, pp. 827-841
-
-
Irvine, K.D.1
Wieschaus, E.2
-
61
-
-
1642282826
-
Patterned gene expression directs bipolar planar polarity in Drosophila
-
Zallen J.A., Wieschaus E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 2004, 6:343-355.
-
(2004)
Dev. Cell
, vol.6
, pp. 343-355
-
-
Zallen, J.A.1
Wieschaus, E.2
-
62
-
-
2942587231
-
Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation
-
Bertet C., et al. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 2004, 429:667-671.
-
(2004)
Nature
, vol.429
, pp. 667-671
-
-
Bertet, C.1
-
63
-
-
33748920035
-
Multicellular rosette formation links planar cell polarity to tissue morphogenesis
-
Blankenship J.T., et al. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 2006, 11:459-470.
-
(2006)
Dev. Cell
, vol.11
, pp. 459-470
-
-
Blankenship, J.T.1
-
64
-
-
57049160895
-
Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis
-
Rauzi M., et al. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 2008, 10:1401-1410.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1401-1410
-
-
Rauzi, M.1
-
65
-
-
70450283823
-
Myosin II dynamics are regulated by tension in intercalating cells
-
Fernandez-Gonzalez R., et al. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 2009, 17:736-743.
-
(2009)
Dev. Cell
, vol.17
, pp. 736-743
-
-
Fernandez-Gonzalez, R.1
-
66
-
-
77956589355
-
Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation
-
Simoes Sde M., et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 2010, 19:377-388.
-
(2010)
Dev. Cell
, vol.19
, pp. 377-388
-
-
Simoes Sde, M.1
-
67
-
-
79955623603
-
Spatial regulation of Dia and myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis
-
Levayer R., et al. Spatial regulation of Dia and myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat. Cell Biol. 2011, 13:529-540.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 529-540
-
-
Levayer, R.1
-
68
-
-
0031416614
-
Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila
-
Jordan P., Karess R. Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila. J. Cell Biol. 1997, 139:1805-1819.
-
(1997)
J. Cell Biol.
, vol.139
, pp. 1805-1819
-
-
Jordan, P.1
Karess, R.2
-
69
-
-
0035815280
-
Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton
-
Winter C.G., et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 2001, 105:81-91.
-
(2001)
Cell
, vol.105
, pp. 81-91
-
-
Winter, C.G.1
-
70
-
-
0037043336
-
Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity
-
Royou A., et al. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J. Cell Biol. 2002, 158:127-137.
-
(2002)
J. Cell Biol.
, vol.158
, pp. 127-137
-
-
Royou, A.1
-
71
-
-
34547573606
-
Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice
-
Bao J., et al. Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice. J. Biol. Chem. 2007, 282:22102-22111.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 22102-22111
-
-
Bao, J.1
-
72
-
-
77957086665
-
Nonmuscle myosin II isoform and domain specificity during early mouse development
-
Wang A., et al. Nonmuscle myosin II isoform and domain specificity during early mouse development. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:14645-14650.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 14645-14650
-
-
Wang, A.1
-
73
-
-
1642448472
-
Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform
-
Kovacs M., et al. Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform. J. Biol. Chem. 2003, 278:38132-38140.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 38132-38140
-
-
Kovacs, M.1
-
74
-
-
0042347443
-
Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance
-
Wang F., et al. Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance. J. Biol. Chem. 2003, 278:27439-27448.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 27439-27448
-
-
Wang, F.1
-
75
-
-
34547158278
-
Load-dependent mechanism of nonmuscle myosin 2
-
Kovacs M., et al. Load-dependent mechanism of nonmuscle myosin 2. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:9994-9999.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 9994-9999
-
-
Kovacs, M.1
-
76
-
-
0031711721
-
Cytoplasmic dynamics of myosin IIA and IIB: spatial 'sorting' of isoforms in locomoting cells
-
Kolega J. Cytoplasmic dynamics of myosin IIA and IIB: spatial 'sorting' of isoforms in locomoting cells. J. Cell Sci. 1998, 111:2085-2095.
-
(1998)
J. Cell Sci.
, vol.111
, pp. 2085-2095
-
-
Kolega, J.1
-
77
-
-
77954232331
-
Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens
-
Smutny M., et al. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat. Cell Biol. 2010, 12:696-702.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 696-702
-
-
Smutny, M.1
-
78
-
-
78650821701
-
Planar polarized actomyosin contractile flows control epithelial junction remodelling
-
Rauzi M., et al. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 2010, 468:1110-1114.
-
(2010)
Nature
, vol.468
, pp. 1110-1114
-
-
Rauzi, M.1
-
79
-
-
34247644614
-
Regulation of actin filament assembly by Arp2/3 complex and formins
-
Pollard T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 2007, 36:451-477.
-
(2007)
Annu. Rev. Biophys. Biomol. Struct.
, vol.36
, pp. 451-477
-
-
Pollard, T.D.1
-
80
-
-
13444292982
-
Drosophila Spire is an actin nucleation factor
-
Quinlan M.E., et al. Drosophila Spire is an actin nucleation factor. Nature 2005, 433:382-388.
-
(2005)
Nature
, vol.433
, pp. 382-388
-
-
Quinlan, M.E.1
-
81
-
-
35348869727
-
Cordon-bleu is an actin nucleation factor and controls neuronal morphology
-
Ahuja R., et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 2007, 131:337-350.
-
(2007)
Cell
, vol.131
, pp. 337-350
-
-
Ahuja, R.1
-
82
-
-
0038313144
-
ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays
-
Le Clainche C., et al. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:6337-6342.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 6337-6342
-
-
Le Clainche, C.1
-
83
-
-
64049091643
-
Cofilin dissociates Arp2/3 complex and branches from actin filaments
-
Chan C., et al. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr. Biol. 2009, 19:537-545.
-
(2009)
Curr. Biol.
, vol.19
, pp. 537-545
-
-
Chan, C.1
-
84
-
-
77953170746
-
GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation
-
Gandhi M., et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol. 2010, 20:861-867.
-
(2010)
Curr. Biol.
, vol.20
, pp. 861-867
-
-
Gandhi, M.1
-
85
-
-
79960917675
-
Unraveling the enigma: progress towards understanding the coronin family of actin regulators
-
Chan K.T., et al. Unraveling the enigma: progress towards understanding the coronin family of actin regulators. Trends Cell Biol. 2011, 21:481-488.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 481-488
-
-
Chan, K.T.1
-
86
-
-
33646386142
-
Stress fibers are generated by two distinct actin assembly mechanisms in motile cells
-
Hotulainen P., Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 2006, 173:383-394.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 383-394
-
-
Hotulainen, P.1
Lappalainen, P.2
-
87
-
-
41549108457
-
Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella
-
Nemethova M., et al. Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J. Cell Biol. 2008, 180:1233-1244.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 1233-1244
-
-
Nemethova, M.1
-
88
-
-
58149300219
-
Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts
-
Anderson T.W., et al. Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol. Biol. Cell 2008, 19:5006-5018.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 5006-5018
-
-
Anderson, T.W.1
-
89
-
-
42749098229
-
Dendritic branching and homogenization of actin networks mediated by arp2/3 complex
-
Tseng Y., Wirtz D. Dendritic branching and homogenization of actin networks mediated by arp2/3 complex. Phys. Rev. Lett. 2004, 93:258104.
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 258104
-
-
Tseng, Y.1
Wirtz, D.2
-
90
-
-
0033160196
-
Cooperation between mDia1 and ROCK in Rho-induced actin reorganization
-
Watanabe N., et al. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1999, 1:136-143.
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 136-143
-
-
Watanabe, N.1
-
91
-
-
34547433610
-
Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis
-
Werner M., et al. Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis. Curr. Biol. 2007, 17:1286-1297.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1286-1297
-
-
Werner, M.1
-
92
-
-
26444449581
-
Distinct pathways control recruitment and maintenance of myosin II at the cleavage furrow during cytokinesis
-
Dean S.O., et al. Distinct pathways control recruitment and maintenance of myosin II at the cleavage furrow during cytokinesis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13473-13478.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 13473-13478
-
-
Dean, S.O.1
-
93
-
-
48249083745
-
MDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells
-
Watanabe S., et al. mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells. Mol. Biol. Cell 2008, 19:2328-2338.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2328-2338
-
-
Watanabe, S.1
-
94
-
-
0034907213
-
MDia mediates Rho-regulated formation and orientation of stable microtubules
-
Palazzo A.F., et al. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 2001, 3:723-729.
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 723-729
-
-
Palazzo, A.F.1
-
95
-
-
71449083102
-
Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells
-
Bertet C., et al. Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells. Development 2009, 136:4199-4212.
-
(2009)
Development
, vol.136
, pp. 4199-4212
-
-
Bertet, C.1
-
96
-
-
42549102235
-
Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis
-
Homem C.C., Peifer M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 2008, 135:1005-1018.
-
(2008)
Development
, vol.135
, pp. 1005-1018
-
-
Homem, C.C.1
Peifer, M.2
-
97
-
-
79952104930
-
Septin structure and function in yeast and beyond
-
Oh Y., Bi E. Septin structure and function in yeast and beyond. Trends Cell Biol. 2011, 21:141-148.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 141-148
-
-
Oh, Y.1
Bi, E.2
-
98
-
-
35548961325
-
Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases
-
Joo E., et al. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev. Cell 2007, 13:677-690.
-
(2007)
Dev. Cell
, vol.13
, pp. 677-690
-
-
Joo, E.1
-
99
-
-
34247618242
-
Anillin and the septins promote asymmetric ingression of the cytokinetic furrow
-
Maddox A.S., et al. Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev. Cell 2007, 12:827-835.
-
(2007)
Dev. Cell
, vol.12
, pp. 827-835
-
-
Maddox, A.S.1
-
100
-
-
58149330180
-
Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility
-
Tooley A.J., et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat. Cell Biol. 2009, 11:17-26.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 17-26
-
-
Tooley, A.J.1
-
101
-
-
38349059960
-
Tropomyosin-based regulation of the actin cytoskeleton in time and space
-
Gunning P., et al. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol. Rev. 2008, 88:1-35.
-
(2008)
Physiol. Rev.
, vol.88
, pp. 1-35
-
-
Gunning, P.1
-
102
-
-
4644284605
-
A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells
-
Bakin A.V., et al. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol. Biol. Cell 2004, 15:4682-4694.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 4682-4694
-
-
Bakin, A.V.1
-
103
-
-
13944273671
-
Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin
-
Gupton S.L., et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 2005, 168:619-631.
-
(2005)
J. Cell Biol.
, vol.168
, pp. 619-631
-
-
Gupton, S.L.1
-
104
-
-
79953794528
-
A molecular pathway for myosin II recruitment to stress fibers
-
Tojkander S., et al. A molecular pathway for myosin II recruitment to stress fibers. Curr. Biol. 2011, 21:539-550.
-
(2011)
Curr. Biol.
, vol.21
, pp. 539-550
-
-
Tojkander, S.1
-
105
-
-
0023864930
-
Cortical flow in animal cells
-
Bray D., White J.G. Cortical flow in animal cells. Science 1988, 239:883-888.
-
(1988)
Science
, vol.239
, pp. 883-888
-
-
Bray, D.1
White, J.G.2
-
106
-
-
79959370905
-
Active multistage coarsening of actin networks driven by myosin motors
-
Silva M.S., et al. Active multistage coarsening of actin networks driven by myosin motors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9408-9413.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9408-9413
-
-
Silva, M.S.1
-
107
-
-
0020316180
-
Surface functions during mitosis. III. Quantitative analysis of ligand-receptor movement into the cleavage furrow: diffusion vs. flow
-
Koppel D.E., et al. Surface functions during mitosis. III. Quantitative analysis of ligand-receptor movement into the cleavage furrow: diffusion vs. flow. J. Cell Biol. 1982, 93:950-960.
-
(1982)
J. Cell Biol.
, vol.93
, pp. 950-960
-
-
Koppel, D.E.1
-
108
-
-
0027970208
-
Single particle tracking of surface receptor movement during cell division
-
Wang Y.L., et al. Single particle tracking of surface receptor movement during cell division. J. Cell Biol. 1994, 127:963-971.
-
(1994)
J. Cell Biol.
, vol.127
, pp. 963-971
-
-
Wang, Y.L.1
-
109
-
-
0025059359
-
Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments
-
Cao L.G., Wang Y.L. Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments. J. Cell Biol. 1990, 111:1905-1911.
-
(1990)
J. Cell Biol.
, vol.111
, pp. 1905-1911
-
-
Cao, L.G.1
Wang, Y.L.2
-
110
-
-
0029779538
-
Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion
-
DeBiasio R.L., et al. Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol. Biol. Cell 1996, 7:1259-1282.
-
(1996)
Mol. Biol. Cell
, vol.7
, pp. 1259-1282
-
-
DeBiasio, R.L.1
-
111
-
-
38749139916
-
Distinct pathways for the early recruitment of myosin II and actin to the cytokinetic furrow
-
Zhou M., Wang Y.L. Distinct pathways for the early recruitment of myosin II and actin to the cytokinetic furrow. Mol. Biol. Cell 2008, 19:318-326.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 318-326
-
-
Zhou, M.1
Wang, Y.L.2
-
112
-
-
77955712440
-
Determinants of myosin II cortical localization during cytokinesis
-
Uehara R., et al. Determinants of myosin II cortical localization during cytokinesis. Curr. Biol. 2010, 20:1080-1085.
-
(2010)
Curr. Biol.
, vol.20
, pp. 1080-1085
-
-
Uehara, R.1
-
113
-
-
0020614748
-
On the mechanisms of cytokinesis in animal cells
-
White J.G., Borisy G.G. On the mechanisms of cytokinesis in animal cells. J. Theor. Biol. 1983, 101:289-316.
-
(1983)
J. Theor. Biol.
, vol.101
, pp. 289-316
-
-
White, J.G.1
Borisy, G.G.2
-
114
-
-
23644457501
-
A cytokinesis furrow is positioned by two consecutive signals
-
Bringmann H., Hyman A.A. A cytokinesis furrow is positioned by two consecutive signals. Nature 2005, 436:731-734.
-
(2005)
Nature
, vol.436
, pp. 731-734
-
-
Bringmann, H.1
Hyman, A.A.2
-
115
-
-
0037436506
-
Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor
-
Straight A.F., et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 2003, 299:1743-1747.
-
(2003)
Science
, vol.299
, pp. 1743-1747
-
-
Straight, A.F.1
-
116
-
-
49649109404
-
Dual role for microtubules in regulating cortical contractility during cytokinesis
-
Murthy K., Wadsworth P. Dual role for microtubules in regulating cortical contractility during cytokinesis. J. Cell Sci. 2008, 121:2350-2359.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2350-2359
-
-
Murthy, K.1
Wadsworth, P.2
-
117
-
-
68849132714
-
Hydrodynamics of cellular cortical flows and the formation of contractile rings
-
Salbreux G., et al. Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys. Rev. Lett. 2009, 103:058102.
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 058102
-
-
Salbreux, G.1
-
118
-
-
18044368530
-
Myosin-II-dependent localization and dynamics of F-actin during cytokinesis
-
Murthy K., Wadsworth P. Myosin-II-dependent localization and dynamics of F-actin during cytokinesis. Curr. Biol. 2005, 15:724-731.
-
(2005)
Curr. Biol.
, vol.15
, pp. 724-731
-
-
Murthy, K.1
Wadsworth, P.2
-
119
-
-
18044363909
-
Cortical actin turnover during cytokinesis requires myosin II
-
Guha M., et al. Cortical actin turnover during cytokinesis requires myosin II. Curr. Biol. 2005, 15:732-736.
-
(2005)
Curr. Biol.
, vol.15
, pp. 732-736
-
-
Guha, M.1
-
120
-
-
0042672950
-
Activity of Rho-family GTPases during cell division as visualized with FRET-based probes
-
Yoshizaki H., et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 2003, 162:223-232.
-
(2003)
J. Cell Biol.
, vol.162
, pp. 223-232
-
-
Yoshizaki, H.1
-
121
-
-
0033615966
-
Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior
-
Sander E.E., et al. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 1999, 147:1009-1022.
-
(1999)
J. Cell Biol.
, vol.147
, pp. 1009-1022
-
-
Sander, E.E.1
-
122
-
-
69949104482
-
A genetically encoded photoactivatable Rac controls the motility of living cells
-
Wu Y.I., et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009, 461:104-108.
-
(2009)
Nature
, vol.461
, pp. 104-108
-
-
Wu, Y.I.1
-
123
-
-
0036898609
-
RAC2 GTPase deficiency and myeloid cell dysfunction in human and mouse
-
Gu Y., Williams D.A. RAC2 GTPase deficiency and myeloid cell dysfunction in human and mouse. J. Pediatr. Hematol. Oncol. 2002, 24:791-794.
-
(2002)
J. Pediatr. Hematol. Oncol.
, vol.24
, pp. 791-794
-
-
Gu, Y.1
Williams, D.A.2
-
124
-
-
0035195553
-
Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis
-
Lundquist E.A., et al. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 2001, 128:4475-4488.
-
(2001)
Development
, vol.128
, pp. 4475-4488
-
-
Lundquist, E.A.1
-
125
-
-
0037187546
-
Rac function and regulation during Drosophila development
-
Hakeda-Suzuki S., et al. Rac function and regulation during Drosophila development. Nature 2002, 416:438-442.
-
(2002)
Nature
, vol.416
, pp. 438-442
-
-
Hakeda-Suzuki, S.1
-
126
-
-
77955489876
-
Cytoskeletal cross-linking and bundling in motor-independent contraction
-
Sun S.X., et al. Cytoskeletal cross-linking and bundling in motor-independent contraction. Curr. Biol. 2010, 20:R649-R654.
-
(2010)
Curr. Biol.
, vol.20
-
-
Sun, S.X.1
-
127
-
-
77957364208
-
Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows
-
Mayer M., et al. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 2010, 467:617-621.
-
(2010)
Nature
, vol.467
, pp. 617-621
-
-
Mayer, M.1
-
128
-
-
0033974762
-
Microtubule-actomyosin interactions in cortical flow and cytokinesis
-
Mandato C.A., et al. Microtubule-actomyosin interactions in cortical flow and cytokinesis. Cell Motil. Cytoskeleton 2000, 45:87-92.
-
(2000)
Cell Motil. Cytoskeleton
, vol.45
, pp. 87-92
-
-
Mandato, C.A.1
-
129
-
-
0030870182
-
Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes
-
Canman J.C., Bement W.M. Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes. J. Cell Sci. 1997, 110(Pt 16):1907-1917.
-
(1997)
J. Cell Sci.
, vol.110
, Issue.PATR 16
, pp. 1907-1917
-
-
Canman, J.C.1
Bement, W.M.2
-
130
-
-
0033836515
-
Analysis of cortical flow models in vivo
-
Benink H.A., et al. Analysis of cortical flow models in vivo. Mol. Biol. Cell 2000, 11:2553-2563.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2553-2563
-
-
Benink, H.A.1
-
131
-
-
56149100878
-
An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning
-
Odell G.M., Foe V.E. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning. J. Cell Biol. 2008, 183:471-483.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 471-483
-
-
Odell, G.M.1
Foe, V.E.2
-
132
-
-
80054019114
-
Wound repair: toward understanding and integration of single-cell and multicellular wound responses
-
Sonnemann K.J., Bement W.M. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 2011, 27:237-263.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 237-263
-
-
Sonnemann, K.J.1
Bement, W.M.2
-
133
-
-
0035921421
-
Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds
-
Mandato C.A., Bement W.M. Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J. Cell Biol. 2001, 154:785-797.
-
(2001)
J. Cell Biol.
, vol.154
, pp. 785-797
-
-
Mandato, C.A.1
Bement, W.M.2
-
134
-
-
13444311711
-
Concentric zones of active RhoA and Cdc42 around single cell wounds
-
Benink H.A., Bement W.M. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 2005, 168:429-439.
-
(2005)
J. Cell Biol.
, vol.168
, pp. 429-439
-
-
Benink, H.A.1
Bement, W.M.2
-
135
-
-
0037672195
-
Actomyosin transports microtubules and microtubules control actomyosin recruitment during Xenopus oocyte wound healing
-
Mandato C.A., Bement W.M. Actomyosin transports microtubules and microtubules control actomyosin recruitment during Xenopus oocyte wound healing. Curr. Biol. 2003, 13:1096-1105.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1096-1105
-
-
Mandato, C.A.1
Bement, W.M.2
-
136
-
-
0037459075
-
Cellular motility driven by assembly and disassembly of actin filaments
-
Pollard T.D., Borisy G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003, 112:453-465.
-
(2003)
Cell
, vol.112
, pp. 453-465
-
-
Pollard, T.D.1
Borisy, G.G.2
-
137
-
-
77952687450
-
Myosin II contributes to cell-scale actin network treadmilling through network disassembly
-
Wilson C.A., et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 2010, 465:373-377.
-
(2010)
Nature
, vol.465
, pp. 373-377
-
-
Wilson, C.A.1
-
138
-
-
4544309783
-
Two distinct actin networks drive the protrusion of migrating cells
-
Ponti A., et al. Two distinct actin networks drive the protrusion of migrating cells. Science 2004, 305:1782-1786.
-
(2004)
Science
, vol.305
, pp. 1782-1786
-
-
Ponti, A.1
-
139
-
-
3042831741
-
Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy
-
Vallotton P., et al. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:9660-9665.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 9660-9665
-
-
Vallotton, P.1
-
140
-
-
1542380678
-
Periodic lamellipodial contractions correlate with rearward actin waves
-
Giannone G., et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 2004, 116:431-443.
-
(2004)
Cell
, vol.116
, pp. 431-443
-
-
Giannone, G.1
-
141
-
-
33745245989
-
Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration
-
Gupton S.L., Waterman-Storer C.M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 2006, 125:1361-1374.
-
(2006)
Cell
, vol.125
, pp. 1361-1374
-
-
Gupton, S.L.1
Waterman-Storer, C.M.2
-
142
-
-
33846672361
-
Lamellipodial actin mechanically links myosin activity with adhesion-site formation
-
Giannone G., et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 2007, 128:561-575.
-
(2007)
Cell
, vol.128
, pp. 561-575
-
-
Giannone, G.1
-
143
-
-
79953325280
-
A role for actin arcs in the leading-edge advance of migrating cells
-
Burnette D.T., et al. A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 2011, 13:371-382.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 371-382
-
-
Burnette, D.T.1
-
144
-
-
57049151271
-
Fluctuations of intracellular forces during cell protrusion
-
Ji L., et al. Fluctuations of intracellular forces during cell protrusion. Nat. Cell Biol. 2008, 10:1393-1400.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1393-1400
-
-
Ji, L.1
-
145
-
-
0028818253
-
Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles
-
Verkhovsky A.B., et al. Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J. Cell Biol. 1995, 131:989-1002.
-
(1995)
J. Cell Biol.
, vol.131
, pp. 989-1002
-
-
Verkhovsky, A.B.1
-
146
-
-
40249118452
-
Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front
-
Koestler S.A., et al. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol. 2008, 10:306-313.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 306-313
-
-
Koestler, S.A.1
-
147
-
-
33750320965
-
Dissection of amoeboid movement into two mechanically distinct modes
-
Yoshida K., Soldati T. Dissection of amoeboid movement into two mechanically distinct modes. J. Cell Sci. 2006, 119:3833-3844.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3833-3844
-
-
Yoshida, K.1
Soldati, T.2
-
148
-
-
50149095564
-
Blebs lead the way: how to migrate without lamellipodia
-
Charras G., Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 2008, 9:730-736.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 730-736
-
-
Charras, G.1
Paluch, E.2
-
149
-
-
33750491282
-
Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow
-
Blaser H., et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 2006, 11:613-627.
-
(2006)
Dev. Cell
, vol.11
, pp. 613-627
-
-
Blaser, H.1
-
150
-
-
33750701767
-
Reassembly of contractile actin cortex in cell blebs
-
Charras G.T., et al. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 2006, 175:477-490.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 477-490
-
-
Charras, G.T.1
-
151
-
-
19644375086
-
Non-equilibration of hydrostatic pressure in blebbing cells
-
Charras G.T., et al. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 2005, 435:365-369.
-
(2005)
Nature
, vol.435
, pp. 365-369
-
-
Charras, G.T.1
-
152
-
-
23244458089
-
Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments
-
Paluch E., et al. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 2005, 89:724-733.
-
(2005)
Biophys. J.
, vol.89
, pp. 724-733
-
-
Paluch, E.1
-
153
-
-
33845328829
-
Cracking up: symmetry breaking in cellular systems
-
Paluch E., et al. Cracking up: symmetry breaking in cellular systems. J. Cell Biol. 2006, 175:687-692.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 687-692
-
-
Paluch, E.1
-
154
-
-
77957227956
-
A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo
-
Kardash E., et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol. 2010, 12:47-53.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 47-53
-
-
Kardash, E.1
-
155
-
-
33744902873
-
Blebbing of Dictyostelium cells in response to chemoattractant
-
Langridge P.D., Kay R.R. Blebbing of Dictyostelium cells in response to chemoattractant. Exp. Cell Res. 2006, 312:2009-2017.
-
(2006)
Exp. Cell Res.
, vol.312
, pp. 2009-2017
-
-
Langridge, P.D.1
Kay, R.R.2
-
156
-
-
0006029624
-
The mechanical characteristics of insect fibrillar muscle
-
North-Holland Publishing Co, R.T. Tregear (Ed.)
-
Pringle J.W.S. The mechanical characteristics of insect fibrillar muscle. Insect Flight Muscle 1977, 177-196. North-Holland Publishing Co. R.T. Tregear (Ed.).
-
(1977)
Insect Flight Muscle
, pp. 177-196
-
-
Pringle, J.W.S.1
-
157
-
-
0029862945
-
Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions
-
Yasuda K., et al. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys. J. 1996, 70:1823-1829.
-
(1996)
Biophys. J.
, vol.70
, pp. 1823-1829
-
-
Yasuda, K.1
-
158
-
-
79954415785
-
Molecular motors as an auto-oscillator
-
Ishiwata S., et al. Molecular motors as an auto-oscillator. HFSP J. 2010, 4:100-104.
-
(2010)
HFSP J.
, vol.4
, pp. 100-104
-
-
Ishiwata, S.1
-
159
-
-
0043117148
-
Cooperative molecular motors
-
Julicher F., Prost J. Cooperative molecular motors. Phys. Rev. Lett. 1995, 75:2618-2621.
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 2618-2621
-
-
Julicher, F.1
Prost, J.2
-
160
-
-
0000946497
-
Spontaneous oscillations of collective molecular motors
-
Jülicher F., Prost J. Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett. 1997, 78:4510-4513.
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 4510-4513
-
-
Jülicher, F.1
Prost, J.2
-
161
-
-
66949117450
-
Collective oscillations of processive molecular motors
-
Campàs O., et al. Collective oscillations of processive molecular motors. Biophys. Rev. Lett. 2009, 4:163-178.
-
(2009)
Biophys. Rev. Lett.
, vol.4
, pp. 163-178
-
-
Campàs, O.1
-
162
-
-
70349857816
-
Spontaneous oscillations of a minimal actomyosin system under elastic loading
-
Placais P.Y., et al. Spontaneous oscillations of a minimal actomyosin system under elastic loading. Phys. Rev. Lett. 2009, 103:158102.
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 158102
-
-
Placais, P.Y.1
-
163
-
-
65949114647
-
Self-organization of dynein motors generates meiotic nuclear oscillations
-
Vogel S.K., et al. Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 2009, 7:e1000087.
-
(2009)
PLoS Biol.
, vol.7
-
-
Vogel, S.K.1
-
164
-
-
18044388732
-
Theory of mitotic spindle oscillations
-
Grill S.W., et al. Theory of mitotic spindle oscillations. Phys. Rev. Lett. 2005, 94:108104.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 108104
-
-
Grill, S.W.1
-
165
-
-
33751117796
-
Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators
-
Pecreaux J., et al. Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr. Biol. 2006, 16:2111-2122.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2111-2122
-
-
Pecreaux, J.1
-
166
-
-
34247541603
-
Cortical microtubule contacts position the spindle in C. elegans embryos
-
Kozlowski C., et al. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 2007, 129:499-510.
-
(2007)
Cell
, vol.129
, pp. 499-510
-
-
Kozlowski, C.1
-
167
-
-
36549035377
-
A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent
-
Haviv L., et al. A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent. J. Mol. Biol. 2008, 375:325-330.
-
(2008)
J. Mol. Biol.
, vol.375
, pp. 325-330
-
-
Haviv, L.1
-
168
-
-
33644775671
-
Myosin II functions in actin-bundle turnover in neuronal growth cones
-
Medeiros N.A., et al. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 2006, 8:215-226.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 215-226
-
-
Medeiros, N.A.1
-
169
-
-
38049125592
-
Shape oscillations of non-adhering fibroblast cells
-
Salbreux G., et al. Shape oscillations of non-adhering fibroblast cells. Phys. Biol. 2007, 4:268-284.
-
(2007)
Phys. Biol.
, vol.4
, pp. 268-284
-
-
Salbreux, G.1
-
170
-
-
45849140886
-
Mechanical and biochemical modeling of cortical oscillations in spreading cells
-
Kapustina M., et al. Mechanical and biochemical modeling of cortical oscillations in spreading cells. Biophys. J. 2008, 94:4605-4620.
-
(2008)
Biophys. J.
, vol.94
, pp. 4605-4620
-
-
Kapustina, M.1
-
171
-
-
58149302947
-
Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells
-
Nam J.H., Fettiplace R. Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells. Biophys. J. 2008, 95:4948-4962.
-
(2008)
Biophys. J.
, vol.95
, pp. 4948-4962
-
-
Nam, J.H.1
Fettiplace, R.2
-
172
-
-
0038614902
-
Spontaneous oscillation by hair bundles of the bullfrog's sacculus
-
Martin P., et al. Spontaneous oscillation by hair bundles of the bullfrog's sacculus. J. Neurosci. 2003, 23:4533-4548.
-
(2003)
J. Neurosci.
, vol.23
, pp. 4533-4548
-
-
Martin, P.1
-
173
-
-
69949185998
-
Coordination of Rho GTPase activities during cell protrusion
-
Machacek M., et al. Coordination of Rho GTPase activities during cell protrusion. Nature 2009, 461:99-103.
-
(2009)
Nature
, vol.461
, pp. 99-103
-
-
Machacek, M.1
-
174
-
-
0037043341
-
Effects of cell tension on the small GTPase Rac
-
Katsumi A., et al. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 2002, 158:153-164.
-
(2002)
J. Cell Biol.
, vol.158
, pp. 153-164
-
-
Katsumi, A.1
-
175
-
-
70549098542
-
Cytoskeletal control of growth and cell fate switching
-
Mammoto A., Ingber D.E. Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol. 2009, 21:864-870.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 864-870
-
-
Mammoto, A.1
Ingber, D.E.2
-
176
-
-
79957884622
-
Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells
-
Tkachenko E., et al. Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat. Cell Biol. 2011, 13:660-667.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 660-667
-
-
Tkachenko, E.1
-
177
-
-
77951234490
-
Pulsation and stabilization: contractile forces that underlie morphogenesis
-
Martin A.C. Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev. Biol. 2010, 341:114-125.
-
(2010)
Dev. Biol.
, vol.341
, pp. 114-125
-
-
Martin, A.C.1
-
178
-
-
79960304076
-
Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells
-
Fernandez-Gonzalez R., Zallen J.A. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells. Phys. Biol. 2011, 8:045005.
-
(2011)
Phys. Biol.
, vol.8
, pp. 045005
-
-
Fernandez-Gonzalez, R.1
Zallen, J.A.2
-
179
-
-
79960296387
-
A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension
-
Sawyer J.K., et al. A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol. Biol. Cell 2011, 22:2491-2508.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2491-2508
-
-
Sawyer, J.K.1
-
180
-
-
0034678354
-
Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila
-
Kiehart D.P., et al. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 2000, 149:471-490.
-
(2000)
J. Cell Biol.
, vol.149
, pp. 471-490
-
-
Kiehart, D.P.1
-
181
-
-
29044448970
-
Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure
-
Franke J.D., et al. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr. Biol. 2005, 15:2208-2221.
-
(2005)
Curr. Biol.
, vol.15
, pp. 2208-2221
-
-
Franke, J.D.1
-
182
-
-
67549147020
-
Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure
-
Solon J., et al. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 2009, 137:1331-1342.
-
(2009)
Cell
, vol.137
, pp. 1331-1342
-
-
Solon, J.1
-
183
-
-
77952132991
-
The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila
-
David D.J., et al. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 2010, 137:1645-1655.
-
(2010)
Development
, vol.137
, pp. 1645-1655
-
-
David, D.J.1
-
184
-
-
77955765046
-
Cytoskeletal dynamics and supracellular organization of cell shape fluctuations during dorsal closure
-
Blanchard G.B., et al. Cytoskeletal dynamics and supracellular organization of cell shape fluctuations during dorsal closure. Development 2010, 137:2743-2752.
-
(2010)
Development
, vol.137
, pp. 2743-2752
-
-
Blanchard, G.B.1
-
185
-
-
78649807120
-
Tissue elongation requires oscillating contractions of a basal actomyosin network
-
He L., et al. Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat. Cell Biol. 2010, 12:1133-1142.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1133-1142
-
-
He, L.1
-
186
-
-
79957454708
-
Structure formation in active networks
-
Kohler S., et al. Structure formation in active networks. Nat. Mater. 2011, 10:462-468.
-
(2011)
Nat. Mater.
, vol.10
, pp. 462-468
-
-
Kohler, S.1
-
187
-
-
77949417549
-
Integration of contractile forces during tissue invagination
-
Martin A.C., et al. Integration of contractile forces during tissue invagination. J. Cell Biol. 2010, 188:735-749.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 735-749
-
-
Martin, A.C.1
-
188
-
-
80052054346
-
Polar actomyosin contractility destabilizes the position of the cytokinetic furrow
-
Sedzinski J., et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 2011, 476:462-466.
-
(2011)
Nature
, vol.476
, pp. 462-466
-
-
Sedzinski, J.1
-
189
-
-
70349245220
-
Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos
-
Pouille P.A., et al. Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal. 2009, 2:ra16.
-
(2009)
Sci. Signal.
, vol.2
-
-
Pouille, P.A.1
-
190
-
-
23844466646
-
A contractile nuclear actin network drives chromosome congression in oocytes
-
Lenart P., et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 2005, 436:812-818.
-
(2005)
Nature
, vol.436
, pp. 812-818
-
-
Lenart, P.1
-
191
-
-
79953770641
-
Intracellular transport by an anchored homogeneously contracting f-actin meshwork
-
Mori M., et al. Intracellular transport by an anchored homogeneously contracting f-actin meshwork. Curr. Biol. 2011, 21:606-611.
-
(2011)
Curr. Biol.
, vol.21
, pp. 606-611
-
-
Mori, M.1
|