메뉴 건너뛰기




Volumn , Issue , 2011, Pages 211-220

Fast GPU-based locality sensitive hashing for k-nearest neighbor computation

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; DIMENSIONAL VECTORS; GPU IMPLEMENTATION; HASH TABLE; HIGH DIMENSIONAL SPACES; K-NEAREST NEIGHBORS; LARGE IMAGES; LOCALITY SENSITIVE HASHING; PARALLELIZATIONS; SECOND LEVEL;

EID: 84856462102     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2093973.2094002     Document Type: Conference Paper
Times cited : (110)

References (44)
  • 2
    • 38749118638 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Symposium on Foundations of Computer Science, pages 459-468, 2006.
    • (2006) Symposium on Foundations of Computer Science , pp. 459-468
    • Andoni, A.1    Indyk, P.2
  • 4
    • 57049122948 scopus 로고    scopus 로고
    • Random projection trees and low dimensional manifolds
    • S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. In Symposium on Theory of Computing, pages 537-546, 2008.
    • (2008) Symposium on Theory of Computing , pp. 537-546
    • Dasgupta, S.1    Freund, Y.2
  • 6
    • 46749086744 scopus 로고    scopus 로고
    • A multi-resolution surface distance model for k-nn query processing
    • K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution surface distance model for k-nn query processing. The VLDB Journal, 17:1101-1119, 2008.
    • (2008) The VLDB Journal , vol.17 , pp. 1101-1119
    • Deng, K.1    Zhou, X.2    Shen, H.T.3    Liu, Q.4    Xu, K.5    Lin, X.6
  • 9
    • 0024737466 scopus 로고
    • Approximating the diameter of a set of points in the Euclidean space
    • DOI 10.1016/0020-0190(89)90045-8
    • O. Egecioglu and B. Kalantari. Approximating the diameter of a set of points in the euclidean space. Information Processing Letters, 32:205-211, 1989. (Pubitemid 20608568)
    • (1989) Information Processing Letters , vol.32 , Issue.4 , pp. 205-211
    • Egecioglu, O.1    Kalantari, B.2
  • 12
    • 15044355327 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, pages 518-529, 1999.
    • (1999) VLDB , pp. 518-529
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 13
    • 0141794290 scopus 로고    scopus 로고
    • ICEAGE: Interactive clustering and exploration of large and high-dimensional geodata
    • DOI 10.1023/A:1025101015202
    • D. Guo, D. J. Peuquet, and M. Gahegan. ICEDAGE: Interactive clustering and exploration of large and high-dimensional geodata. GeoInformatica, 7(3):229-253, 2003. (Pubitemid 37212162)
    • (2003) GeoInformatica , vol.7 , Issue.3 , pp. 229-253
    • Guo, D.1    Peuquet, D.J.2    Gahegan, M.3
  • 16
    • 85020587372 scopus 로고    scopus 로고
    • Fast computation of generalized voronoi diagrams using graphics hardware
    • K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation of generalized voronoi diagrams using graphics hardware. In SIGGRAPH, pages 277-286, 1999.
    • (1999) SIGGRAPH , pp. 277-286
    • Hoff III, K.E.1    Keyser, J.2    Lin, M.3    Manocha, D.4    Culver, T.5
  • 17
    • 33646268132 scopus 로고    scopus 로고
    • Stream reduction operations for GPGPU applications
    • Addison Wesley
    • D. Horn. Stream reduction operations for GPGPU applications. In GPU Gems 2, pages 573-589. Addison Wesley, 2005.
    • (2005) GPU Gems 2 , pp. 573-589
    • Horn, D.1
  • 18
    • 78650610346 scopus 로고    scopus 로고
    • Verifying spatial queries using voronoi neighbors
    • L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi. Verifying spatial queries using voronoi neighbors. In SIGSPATIAL GIS, pages 350-359, 2010.
    • (2010) SIGSPATIAL GIS , pp. 350-359
    • Hu, L.1    Ku, W.-S.2    Bakiras, S.3    Shahabi, C.4
  • 24
    • 0030714233 scopus 로고    scopus 로고
    • Two algorithms for nearest-neighbor search in high dimensions
    • J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Symposium on Theory of Computing, pages 599-608, 1997.
    • (1997) Symposium on Theory of Computing , pp. 599-608
    • Kleinberg, J.M.1
  • 26
    • 85117329200 scopus 로고    scopus 로고
    • Voronoi-based k nearest neighbor search for spatial network databases
    • M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search for spatial network databases. In VLDB, pages 840-851, 2004.
    • (2004) VLDB , pp. 840-851
    • Kolahdouzan, M.1    Shahabi, C.2
  • 28
    • 77952837979 scopus 로고    scopus 로고
    • GProximity: Hierarchical GPU-based operations for collision and distance queries
    • C. Lauterbach, Q. Mo, and D. Manocha. gProximity: Hierarchical GPU-based operations for collision and distance queries. Computer Graphics Forum, 29(2):419-428, 2010.
    • (2010) Computer Graphics Forum , vol.29 , Issue.2 , pp. 419-428
    • Lauterbach, C.1    Mo, Q.2    Manocha, D.3
  • 29
    • 84955245129 scopus 로고    scopus 로고
    • Multi-probe LSH: Efficient indexing for high-dimensional similarity search
    • Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH: efficient indexing for high-dimensional similarity search. In VLDB, pages 950-961, 2007.
    • (2007) VLDB , pp. 950-961
    • Lv, Q.1    Josephson, W.2    Wang, Z.3    Charikar, M.4    Li, K.5
  • 34
    • 85012217314 scopus 로고    scopus 로고
    • Query processing in spatial network databases
    • D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial network databases. In VLDB, pages 802-813, 2003.
    • (2003) VLDB , pp. 802-813
    • Papadias, D.1    Zhang, J.2    Mamoulis, N.3    Tao, Y.4
  • 35
  • 38
    • 0038644058 scopus 로고    scopus 로고
    • A road network embedding technique for k-nearest neighbor search in moving object databases
    • C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embedding technique for k-nearest neighbor search in moving object databases. In SIGSPATIAL GIS, pages 94-100, 2002.
    • (2002) SIGSPATIAL GIS , pp. 94-100
    • Shahabi, C.1    Kolahdouzan, M.R.2    Sharifzadeh, M.3
  • 40
    • 77954016837 scopus 로고    scopus 로고
    • Fast proximity computation among deformable models using discrete Voronoi diagrams
    • DOI 10.1145/1141911.1142006, ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH 2006
    • A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha. Fast proximity computation among deformable models using discrete voronoi diagrams. ACM Transactions on Graphics, 25:1144-1153, 2006. (Pubitemid 44481078)
    • (2006) ACM Transactions on Graphics , vol.25 , Issue.3 , pp. 1144-1153
    • Sud, A.1    Govindaraju, N.2    Gayle, R.3    Kabul, I.4    Manocha, D.5
  • 41
    • 15844367699 scopus 로고    scopus 로고
    • Fast and lock-free concurrent priority queues for multi-thread systems
    • DOI 10.1016/j.jpdc.2004.12.005, PII S0743731504002333
    • H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-thread systems. Journal of Parallel and Distributed Computing, 65:609-627, 2005. (Pubitemid 40423896)
    • (2005) Journal of Parallel and Distributed Computing , vol.65 , Issue.5 , pp. 609-627
    • Sundell, H.1    Tsigas, P.2
  • 42
    • 0012951952 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In VLDB, pages 194-205, 1998.
    • (1998) VLDB , pp. 194-205
    • Weber, R.1    Schek, H.-J.2    Blott, S.3
  • 44
    • 57749174539 scopus 로고    scopus 로고
    • Real-time kd-tree construction on graphics hardware
    • K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on graphics hardware. In SIGGRAPH Asia, pages 126:1-126:11, 2008.
    • (2008) SIGGRAPH Asia
    • Zhou, K.1    Hou, Q.2    Wang, R.3    Guo, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.